File size: 6,431 Bytes
af1fa5c a0a0756 af1fa5c a0a0756 af1fa5c a0a0756 af1fa5c a0a0756 b16de67 af1fa5c a0a0756 af1fa5c a0a0756 af1fa5c a0a0756 af1fa5c a0a0756 af1fa5c a0a0756 af1fa5c 40d109e a0a0756 40d109e a0a0756 40d109e a0a0756 af1fa5c 40d109e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Exact Match metric."""
import re
import string
import datasets
import numpy as np
import evaluate
_DESCRIPTION = """
returns a score that indicates how close the bash command generated is to the actual command with a perfect score out of 1.0
"""
_KWARGS_DESCRIPTION = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 1.0, inclusive.
Examples:
>>> exact_match = evaluate.load("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["exact_match"], 2))
0.25
>>> exact_match = evaluate.load("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results["exact_match"], 2))
0.5
>>> exact_match = evaluate.load("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results["exact_match"], 2))
0.75
>>> exact_match = evaluate.load("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results["exact_match"], 2))
1.0
>>> exact_match = evaluate.load("exact_match")
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."]
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["exact_match"], 2))
0.33
"""
_CITATION = """
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class nl2bash_m(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
reference_urls=[],
)
def get_score(self, pred, ref):
if not pred and not ref: return 1
cor = 0
for i in range(min(len(pred), len(ref))):
if (pred[i] == ref[i]):
cor += 1
return cor/max(len(pred), len(ref))
def _compute(
self,
predictions,
references,
cmd_weight = 0.65,
opt_weight = 0.25,
arg_weight = 0.15,
ignore_case=False,
ignore_numbers=False,
):
predictions = np.asarray(predictions)
references = np.asarray(references)
if ignore_case:
predictions = np.char.lower(predictions)
references = np.char.lower(references)
if ignore_numbers:
repl_table = string.digits.maketrans("", "", string.digits)
predictions = np.char.translate(predictions, table=repl_table)
references = np.char.translate(references, table=repl_table)
final_score = 0
for pred, ref in zip(predictions, references):
print(pred, ref)
pred_words, ref_words = pred[0].split(), ref[0].split()
# Get the cmd of predicted and ref
cmd_corr = 1 if pred_words.pop(0)==ref_words.pop(0) else 0
# Get the option of predicted and ref
pred_option = [ x for x in pred_words if x[0] == '-']
ref_option = [ x for x in ref_words if x[0] == '-']
# Get the arguments of predicted and ref
pred_args = [ x for x in pred_words if x[0] != '-']
ref_args = [ x for x in ref_words if x[0] != '-']
# Calculate scores
cmd_score = cmd_weight * cmd_corr
opt_score = opt_weight * self.get_score(pred_option, ref_option)
arg_score = arg_weight * self.get_score(pred_args, ref_args)
score = cmd_score + opt_score + arg_score
final_score += score
print(score)
final_score = final_score/len(self.preds)
print("f_s: ", final_score)
return {"nl2bash_m": (final_score)} |