File size: 5,635 Bytes
af1fa5c
 
 
 
 
 
 
 
 
 
 
 
 
a0a0756
 
 
af1fa5c
 
a0a0756
af1fa5c
a0a0756
af1fa5c
 
a0a0756
b16de67
af1fa5c
 
 
 
a0a0756
 
 
 
 
 
 
 
 
 
 
 
af1fa5c
a0a0756
af1fa5c
a0a0756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af1fa5c
 
a0a0756
 
af1fa5c
 
 
 
 
 
 
 
 
a0a0756
 
 
 
 
 
 
af1fa5c
 
a0a0756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af1fa5c
a0a0756
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Exact Match metric."""
import re
import string

import datasets
import numpy as np

import evaluate


_DESCRIPTION = """
returns a score that indicates how close the bash command generated is to the actual command with a perfect score out of 1.0
"""

_KWARGS_DESCRIPTION = """
Args:
    predictions: List of predicted texts.
    references: List of reference texts.
    regexes_to_ignore: List, defaults to None. Regex expressions of characters to
        ignore when calculating the exact matches. Note: these regexes are removed
        from the input data before the changes based on the options below (e.g. ignore_case,
        ignore_punctuation, ignore_numbers) are applied.
    ignore_case: Boolean, defaults to False. If true, turns everything
        to lowercase so that capitalization differences are ignored.
    ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
        comparing predictions and references.
    ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
        comparing predictions and references.
Returns:
    exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 1.0, inclusive.
Examples:
    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["the cat", "theater", "YELLING", "agent007"]
    >>> preds = ["cat?", "theater", "yelling", "agent"]
    >>> results = exact_match.compute(references=refs, predictions=preds)
    >>> print(round(results["exact_match"], 2))
    0.25
    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["the cat", "theater", "YELLING", "agent007"]
    >>> preds = ["cat?", "theater", "yelling", "agent"]
    >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
    >>> print(round(results["exact_match"], 2))
    0.5
    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["the cat", "theater", "YELLING", "agent007"]
    >>> preds = ["cat?", "theater", "yelling", "agent"]
    >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
    >>> print(round(results["exact_match"], 2))
    0.75
    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["the cat", "theater", "YELLING", "agent007"]
    >>> preds = ["cat?", "theater", "yelling", "agent"]
    >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
    >>> print(round(results["exact_match"], 2))
    1.0
    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."]
    >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."]
    >>> results = exact_match.compute(references=refs, predictions=preds)
    >>> print(round(results["exact_match"], 2))
    0.33
"""

_CITATION = """
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class nl2bash_m(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": datasets.Value("string", id="sequence"),
                    "references": datasets.Value("string", id="sequence"),
                }
            ),
            reference_urls=[],
        )

    def _compute(
        self,
        predictions,
        references,
        regexes_to_ignore=None,
        ignore_case=False,
        ignore_punctuation=False,
        ignore_numbers=False,
    ):

        if regexes_to_ignore is not None:
            for s in regexes_to_ignore:
                predictions = np.array([re.sub(s, "", x) for x in predictions])
                references = np.array([re.sub(s, "", x) for x in references])
        else:
            predictions = np.asarray(predictions)
            references = np.asarray(references)

        if ignore_case:
            predictions = np.char.lower(predictions)
            references = np.char.lower(references)

        if ignore_punctuation:
            repl_table = string.punctuation.maketrans("", "", string.punctuation)
            predictions = np.char.translate(predictions, table=repl_table)
            references = np.char.translate(references, table=repl_table)

        if ignore_numbers:
            repl_table = string.digits.maketrans("", "", string.digits)
            predictions = np.char.translate(predictions, table=repl_table)
            references = np.char.translate(references, table=repl_table)

        score_list = predictions == references

        return {"exact_match": np.mean(score_list)}