update some comments
Browse files- nl2bash_m.py +14 -43
nl2bash_m.py
CHANGED
@@ -11,7 +11,7 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
15 |
import re
|
16 |
import string
|
17 |
|
@@ -28,50 +28,23 @@ returns a score that indicates how close the bash command generated is to the ac
|
|
28 |
_KWARGS_DESCRIPTION = """
|
29 |
Args:
|
30 |
predictions: List of predicted texts.
|
31 |
-
references: List of reference texts.
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
to lowercase so that capitalization differences are ignored.
|
38 |
-
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
|
39 |
-
comparing predictions and references.
|
40 |
-
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
|
41 |
-
comparing predictions and references.
|
42 |
Returns:
|
43 |
-
|
44 |
Examples:
|
45 |
-
|
46 |
-
|
47 |
-
>>>
|
|
|
|
|
48 |
>>> results = exact_match.compute(references=refs, predictions=preds)
|
49 |
-
>>> print(round(results["
|
50 |
0.25
|
51 |
-
>>> exact_match = evaluate.load("exact_match")
|
52 |
-
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
53 |
-
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
54 |
-
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
|
55 |
-
>>> print(round(results["exact_match"], 2))
|
56 |
-
0.5
|
57 |
-
>>> exact_match = evaluate.load("exact_match")
|
58 |
-
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
59 |
-
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
60 |
-
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
|
61 |
-
>>> print(round(results["exact_match"], 2))
|
62 |
-
0.75
|
63 |
-
>>> exact_match = evaluate.load("exact_match")
|
64 |
-
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
65 |
-
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
66 |
-
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
|
67 |
-
>>> print(round(results["exact_match"], 2))
|
68 |
-
1.0
|
69 |
-
>>> exact_match = evaluate.load("exact_match")
|
70 |
-
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."]
|
71 |
-
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."]
|
72 |
-
>>> results = exact_match.compute(references=refs, predictions=preds)
|
73 |
-
>>> print(round(results["exact_match"], 2))
|
74 |
-
0.33
|
75 |
"""
|
76 |
|
77 |
_CITATION = """
|
@@ -138,7 +111,6 @@ class nl2bash_m(evaluate.Metric):
|
|
138 |
final_score = 0
|
139 |
|
140 |
for pred, ref in zip(predictions, references):
|
141 |
-
print(pred, ref)
|
142 |
pred_words, ref_words = pred.split(), ref[0].split()
|
143 |
# Get the cmd of predicted and ref
|
144 |
cmd_corr = 1 if pred_words.pop(0)==ref_words.pop(0) else 0
|
@@ -158,7 +130,6 @@ class nl2bash_m(evaluate.Metric):
|
|
158 |
|
159 |
score = cmd_score + opt_score + arg_score
|
160 |
final_score += score
|
161 |
-
print(score)
|
162 |
|
163 |
final_score = final_score/len(predictions)
|
164 |
print("f_s: ", final_score)
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""nl2bash metric."""
|
15 |
import re
|
16 |
import string
|
17 |
|
|
|
28 |
_KWARGS_DESCRIPTION = """
|
29 |
Args:
|
30 |
predictions: List of predicted texts.
|
31 |
+
references: List of reference texts.
|
32 |
+
cmd_weight: The weight you want to put on getting the command correct
|
33 |
+
opt_weight: The weight you want to put on getting the option correct
|
34 |
+
arg_weight: The weight you want to put on getting the arg correct
|
35 |
+
ignore_case=False,
|
36 |
+
ignore_numbers=False,
|
|
|
|
|
|
|
|
|
|
|
37 |
Returns:
|
38 |
+
nl2bash metric: Dictionary containing nl2bash score. Possible values are between 0.0 and 1.0, inclusive.
|
39 |
Examples:
|
40 |
+
|
41 |
+
|
42 |
+
>>> metric = evaluate.load("Josh98/nl2bash_m")
|
43 |
+
>>> preds = ["ls -l /home/userr", "ls -l /home/josh", "lss /home/josh some argument"]
|
44 |
+
>>> refs = [["ls -l /home/user"], ["ls -l --v /home/josh"], ["ls /home/josh"]]
|
45 |
>>> results = exact_match.compute(references=refs, predictions=preds)
|
46 |
+
>>> print(round(results["nl2bash"], 2))
|
47 |
0.25
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
"""
|
49 |
|
50 |
_CITATION = """
|
|
|
111 |
final_score = 0
|
112 |
|
113 |
for pred, ref in zip(predictions, references):
|
|
|
114 |
pred_words, ref_words = pred.split(), ref[0].split()
|
115 |
# Get the cmd of predicted and ref
|
116 |
cmd_corr = 1 if pred_words.pop(0)==ref_words.pop(0) else 0
|
|
|
130 |
|
131 |
score = cmd_score + opt_score + arg_score
|
132 |
final_score += score
|
|
|
133 |
|
134 |
final_score = final_score/len(predictions)
|
135 |
print("f_s: ", final_score)
|