File size: 2,110 Bytes
8894bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966faf5
770cc5e
8894bfe
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
### Adapted from https://huggingface.co/spaces/valurank/News_Articles_Categorization

#importing the necessary libraries
import gradio as gr
import numpy as np
import pandas as pd
import re
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

#Defining the labels of the models
labels = ["business", "science","health", "world", "sport", "politics", "entertainment", "tech"]

#Defining the models and tokenuzer
model_name = "valurank/finetuned-distilbert-news-article-categorization"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

"""
#Reading in the text file
def read_in_text(url):
  with open(url, 'r') as file:
    article = file.read()
      
    return article
"""

def clean_text(raw_text):
  text = raw_text.encode("ascii", errors="ignore").decode(
          "ascii"
    )  # remove non-ascii, Chinese characters
    
  text = re.sub(r"\n", " ", text)
  text = re.sub(r"\n\n", " ", text)
  text = re.sub(r"\t", " ", text)
  text = text.strip(" ")
  text = re.sub(
        " +", " ", text
    ).strip()  # get rid of multiple spaces and replace with a single

  text = re.sub(r"Date\s\d{1,2}\/\d{1,2}\/\d{4}", "", text) #remove date
  text = re.sub(r"\d{1,2}:\d{2}\s[A-Z]+\s[A-Z]+", "", text) #remove time
    
  return text
 
#Defining a function to get the category of the news article   
def get_category(text):
  text = clean_text(text)

  input_tensor = tokenizer.encode(text, return_tensors="pt", truncation=True)
  logits = model(input_tensor).logits

  softmax = torch.nn.Softmax(dim=1)
  probs = softmax(logits)[0]
  probs = probs.cpu().detach().numpy()
  max_index = np.argmax(probs)
  emotion = labels[max_index]
    
  return emotion
  
#Creating the interface for the radio app
demo = gr.Interface(get_category, 
                    inputs=gr.inputs.Textbox(label="Paste article text here",lines=4),
                    outputs = "text",
                    title="News Article Categorization")


#Launching the gradio app
if __name__ == "__main__":
  demo.launch(debug=True)