Spaces:
Runtime error
Runtime error
Commit
·
4518611
1
Parent(s):
cf4d177
Update app.py
Browse files
app.py
CHANGED
@@ -206,8 +206,11 @@ def tweets_localidad(buscar_localidad):
|
|
206 |
location = geolocator.geocode(buscar_localidad)
|
207 |
radius = "100km"
|
208 |
tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50)
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
211 |
tweet_list = [i.text for i in tweets]
|
212 |
text= pd.DataFrame(tweet_list)
|
213 |
text[0] = text[0].apply(preprocess_tweet)
|
@@ -250,7 +253,7 @@ def tweets_localidad(buscar_localidad):
|
|
250 |
|
251 |
probability = np.amax(logits1,axis=1).flatten()
|
252 |
Tweets =['Últimos 50 Tweets'+' de '+ buscar_localidad]
|
253 |
-
df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad'])
|
254 |
|
255 |
df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista')
|
256 |
#df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
@@ -258,7 +261,20 @@ def tweets_localidad(buscar_localidad):
|
|
258 |
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
|
259 |
|
260 |
tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion']))
|
|
|
|
|
|
|
|
|
|
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
return df
|
264 |
|
|
|
206 |
location = geolocator.geocode(buscar_localidad)
|
207 |
radius = "100km"
|
208 |
tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50)
|
209 |
+
localidad = [i.user.location for i in tweets]
|
210 |
+
text_localidad = pd.DataFrame(localidad)
|
211 |
+
username = [i.user.screen_name for i in tweets]
|
212 |
+
text_user= pd.DataFrame(username)
|
213 |
+
|
214 |
tweet_list = [i.text for i in tweets]
|
215 |
text= pd.DataFrame(tweet_list)
|
216 |
text[0] = text[0].apply(preprocess_tweet)
|
|
|
253 |
|
254 |
probability = np.amax(logits1,axis=1).flatten()
|
255 |
Tweets =['Últimos 50 Tweets'+' de '+ buscar_localidad]
|
256 |
+
df = pd.DataFrame(list(zip(text1, localidad,username, flat_predictions,probability)), columns = ['Tweets' ,'Localidad' , 'Usuario','Prediccion','Probabilidad'])
|
257 |
|
258 |
df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista')
|
259 |
#df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
|
|
261 |
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
|
262 |
|
263 |
tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion']))
|
264 |
+
|
265 |
+
df_sexista = df[df['Prediccion']=="Sexista"]
|
266 |
+
df_no_sexista = df[df['Probabilidad'] > 0]
|
267 |
+
sexista = len(df_sexista)
|
268 |
+
no_sexista = len(df_no_sexista)
|
269 |
|
270 |
+
# Crear un gráfico de barras
|
271 |
+
labels = ['Sexista ', ' No sexista']
|
272 |
+
counts = [sexista, no_sexista]
|
273 |
+
plt.bar(labels, counts)
|
274 |
+
plt.xlabel('Categoría')
|
275 |
+
plt.ylabel('Cantidad de tweets')
|
276 |
+
plt.title('Cantidad de tweets sexistas y no sexistas')
|
277 |
+
plt.show()
|
278 |
|
279 |
return df
|
280 |
|