Spaces:
Runtime error
Runtime error
Commit
·
c2c681e
1
Parent(s):
2158a3c
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,22 @@
|
|
1 |
import tweepy as tw
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
import regex as re
|
|
|
7 |
import pysentimiento
|
8 |
import geopy
|
9 |
import matplotlib.pyplot as plt
|
|
|
|
|
10 |
|
11 |
from pysentimiento.preprocessing import preprocess_tweet
|
12 |
from geopy.geocoders import Nominatim
|
|
|
|
|
13 |
|
14 |
-
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
15 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021')
|
17 |
-
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
device = torch.device( "cuda")
|
22 |
-
print('I will use the GPU:', torch.cuda.get_device_name(0))
|
23 |
-
|
24 |
-
else:
|
25 |
-
print('No GPU available, using the CPU instead.')
|
26 |
-
device = torch.device("cpu")
|
27 |
|
28 |
|
29 |
consumer_key = "BjipwQslVG4vBdy4qK318KnoA"
|
@@ -33,34 +26,23 @@ access_token_secret = "pqQ5aFSJxzJ2xnI6yhVtNjQO36FOu8DBOH6DtUrPAU54J"
|
|
33 |
auth = tw.OAuthHandler(consumer_key, consumer_secret)
|
34 |
auth.set_access_token(access_token, access_token_secret)
|
35 |
api = tw.API(auth, wait_on_rate_limit=True)
|
36 |
-
|
37 |
-
def
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
#remove some puncts (except . ! ?)
|
54 |
-
text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
|
55 |
-
text=re.sub(r'[!]+','!',text)
|
56 |
-
text=re.sub(r'[?]+','?',text)
|
57 |
-
text=re.sub(r'[.]+','.',text)
|
58 |
-
text=re.sub(r"'","",text)
|
59 |
-
text=re.sub(r"\(","",text)
|
60 |
-
text=re.sub(r"\)","",text)
|
61 |
-
text=" ".join(text.split())
|
62 |
-
return text
|
63 |
-
|
64 |
|
65 |
def highlight_survived(s):
|
66 |
return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s)
|
@@ -73,231 +55,168 @@ def color_survived(val):
|
|
73 |
st.set_page_config(layout="wide")
|
74 |
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
|
83 |
-
|
84 |
-
st.markdown(""" <style> .font1 {
|
85 |
-
font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;}
|
86 |
-
</style> """, unsafe_allow_html=True)
|
87 |
-
|
88 |
-
st.markdown(""" <style> .font2 {
|
89 |
-
font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;}
|
90 |
-
</style> """, unsafe_allow_html=True)
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
def analizar_tweets(search_words, number_of_tweets ):
|
97 |
-
tweets = api.user_timeline(screen_name = search_words, count= number_of_tweets)
|
98 |
-
tweet_list = [i.text for i in tweets]
|
99 |
-
text= pd.DataFrame(tweet_list)
|
100 |
-
text[0] = text[0].apply(preprocess_tweet)
|
101 |
-
text1=text[0].values
|
102 |
-
indices1=tokenizer.batch_encode_plus(text1.tolist(), max_length=128,add_special_tokens=True, return_attention_mask=True,pad_to_max_length=True,truncation=True)
|
103 |
-
input_ids1=indices1["input_ids"]
|
104 |
-
attention_masks1=indices1["attention_mask"]
|
105 |
-
prediction_inputs1= torch.tensor(input_ids1)
|
106 |
-
prediction_masks1 = torch.tensor(attention_masks1)
|
107 |
-
batch_size = 25
|
108 |
-
# Create the DataLoader.
|
109 |
-
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
|
110 |
-
prediction_sampler1 = SequentialSampler(prediction_data1)
|
111 |
-
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
|
112 |
-
#print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
|
113 |
-
# Put model in evaluation mode
|
114 |
-
model.eval()
|
115 |
-
# Tracking variables
|
116 |
-
predictions = []
|
117 |
-
for batch in prediction_dataloader1:
|
118 |
-
batch = tuple(t.to(device) for t in batch)
|
119 |
-
# Unpack the inputs from our dataloader
|
120 |
-
b_input_ids1, b_input_mask1 = batch
|
121 |
-
|
122 |
-
#Telling the model not to compute or store gradients, saving memory and # speeding up prediction
|
123 |
-
with torch.no_grad():
|
124 |
-
# Forward pass, calculate logit predictions
|
125 |
-
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
|
126 |
-
logits1 = outputs1[0]
|
127 |
-
# Move logits and labels to CPU
|
128 |
-
logits1 = logits1.detach().cpu().numpy()
|
129 |
-
# Store predictions and true labels
|
130 |
-
predictions.append(logits1)
|
131 |
-
|
132 |
-
#flat_predictions = [item for sublist in predictions for item in sublist]
|
133 |
-
flat_predictions = [item for sublist in predictions for item in sublist]
|
134 |
-
|
135 |
-
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()
|
136 |
-
|
137 |
-
probability = np.amax(logits1,axis=1).flatten()
|
138 |
-
Tweets =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words]
|
139 |
-
df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad'])
|
140 |
-
|
141 |
-
df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista')
|
142 |
-
df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
143 |
-
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
|
144 |
-
|
145 |
-
tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
|
146 |
|
147 |
-
return tabla
|
148 |
-
|
149 |
-
def analizar_frase(frase):
|
150 |
-
#palabra = frase.split()
|
151 |
-
palabra = [frase]
|
152 |
-
|
153 |
-
indices1=tokenizer.batch_encode_plus(palabra,max_length=128,add_special_tokens=True,
|
154 |
-
return_attention_mask=True,
|
155 |
-
pad_to_max_length=True,
|
156 |
-
truncation=True)
|
157 |
-
input_ids1=indices1["input_ids"]
|
158 |
-
attention_masks1=indices1["attention_mask"]
|
159 |
-
prediction_inputs1= torch.tensor(input_ids1)
|
160 |
-
prediction_masks1 = torch.tensor(attention_masks1)
|
161 |
-
batch_size = 25
|
162 |
-
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
|
163 |
-
prediction_sampler1 = SequentialSampler(prediction_data1)
|
164 |
-
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
|
165 |
-
model.eval()
|
166 |
-
predictions = []
|
167 |
-
# Predict
|
168 |
-
for batch in prediction_dataloader1:
|
169 |
-
batch = tuple(t.to(device) for t in batch)
|
170 |
-
# Unpack the inputs from our dataloader
|
171 |
-
b_input_ids1, b_input_mask1 = batch
|
172 |
-
# Telling the model not to compute or store gradients, saving memory and # speeding up prediction
|
173 |
-
with torch.no_grad():
|
174 |
-
# Forward pass, calculate logit predictions
|
175 |
-
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
|
176 |
-
logits1 = outputs1[0]
|
177 |
-
# Move logits and labels to CPU
|
178 |
-
logits1 = logits1.detach().cpu().numpy()
|
179 |
-
# Store predictions and true labels
|
180 |
-
predictions.append(logits1)
|
181 |
-
flat_predictions = [item for sublist in predictions for item in sublist]
|
182 |
-
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()
|
183 |
-
tokens = tokenizer.tokenize(frase)
|
184 |
-
# Convertir los tokens a un formato compatible con el modelo
|
185 |
-
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
186 |
-
attention_masks = [1] * len(input_ids)
|
187 |
-
|
188 |
-
# Pasar los tokens al modelo
|
189 |
-
outputs = model(torch.tensor([input_ids]), token_type_ids=None, attention_mask=torch.tensor([attention_masks]))
|
190 |
-
scores = outputs[0]
|
191 |
-
#prediccion = scores.argmax(dim=1).item()
|
192 |
-
# Obtener la probabilidad de que la frase sea "sexista"
|
193 |
-
probabilidad_sexista = scores.amax(dim=1).item()
|
194 |
-
#print(probabilidad_sexista)
|
195 |
-
|
196 |
-
# Crear un Dataframe
|
197 |
-
text= pd.DataFrame({'Frase': [frase], 'Prediccion':[flat_predictions], 'Probabilidad':[probabilidad_sexista]})
|
198 |
-
text['Prediccion'] = np.where(text['Prediccion'] == 0 , 'No Sexista', 'Sexista')
|
199 |
|
|
|
|
|
|
|
200 |
|
201 |
-
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
return tabla
|
204 |
|
205 |
def tweets_localidad(buscar_localidad):
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
281 |
|
282 |
-
return df
|
283 |
-
|
284 |
-
|
285 |
def run():
|
286 |
with st.form("my_form"):
|
287 |
col,buff1, buff2 = st.columns([2,2,1])
|
288 |
st.write("Escoja una Opción")
|
289 |
-
search_words = col.text_input("Introduzca
|
290 |
-
number_of_tweets = col.number_input('Introduzca número de tweets a analizar
|
291 |
-
termino=st.checkbox('
|
292 |
usuario=st.checkbox('Usuario')
|
293 |
localidad=st.checkbox('Localidad')
|
294 |
submit_button = col.form_submit_button(label='Analizar')
|
295 |
error =False
|
296 |
-
|
297 |
-
clear_button = st.sidebar.button('Clear')
|
298 |
-
|
299 |
-
st.sidebar.row(submit_button, clear_button)
|
300 |
-
|
301 |
if submit_button:
|
302 |
# Condición para el caso de que esten dos check seleccionados
|
303 |
if ( termino == False and usuario == False and localidad == False):
|
@@ -312,8 +231,8 @@ def run():
|
|
312 |
analizar_frase(search_words)
|
313 |
|
314 |
elif (usuario):
|
315 |
-
|
316 |
elif (localidad):
|
317 |
tweets_localidad(search_words)
|
318 |
-
|
319 |
run()
|
|
|
1 |
import tweepy as tw
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
|
|
|
|
4 |
import regex as re
|
5 |
+
import numpy as np
|
6 |
import pysentimiento
|
7 |
import geopy
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
import langdetect
|
10 |
+
|
11 |
|
12 |
from pysentimiento.preprocessing import preprocess_tweet
|
13 |
from geopy.geocoders import Nominatim
|
14 |
+
from transformers import pipeline
|
15 |
+
from langdetect import detect
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021"
|
19 |
+
pipeline_nlp = pipeline("text-classification", model=model_checkpoint)
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
|
22 |
consumer_key = "BjipwQslVG4vBdy4qK318KnoA"
|
|
|
26 |
auth = tw.OAuthHandler(consumer_key, consumer_secret)
|
27 |
auth.set_access_token(access_token, access_token_secret)
|
28 |
api = tw.API(auth, wait_on_rate_limit=True)
|
29 |
+
|
30 |
+
def limpieza_datos(tweet):
|
31 |
+
# Eliminar emojis
|
32 |
+
tweet = re.sub(r'[\U0001F600-\U0001F64F]', '', tweet)
|
33 |
+
tweet = re.sub(r'[\U0001F300-\U0001F5FF]', '', tweet)
|
34 |
+
tweet = re.sub(r'[\U0001F680-\U0001F6FF]', '', tweet)
|
35 |
+
tweet = re.sub(r'[\U0001F1E0-\U0001F1FF]', '', tweet)
|
36 |
+
# Eliminar arrobas
|
37 |
+
tweet = re.sub(r'@\w+', '', tweet)
|
38 |
+
# Eliminar URL
|
39 |
+
tweet = re.sub(r'http\S+', '', tweet)
|
40 |
+
# Eliminar hashtags
|
41 |
+
tweet = re.sub(r'#\w+', '', tweet)
|
42 |
+
# Eliminar caracteres especiales
|
43 |
+
#tweet = re.sub(r'[^a-zA-Z0-9 \n\.]', '', tweet)
|
44 |
+
tweet = re.sub(r'[^a-zA-Z0-9 \n\áéíóúÁÉÍÓÚñÑ.]', '', tweet)
|
45 |
+
return tweet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def highlight_survived(s):
|
48 |
return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s)
|
|
|
55 |
st.set_page_config(layout="wide")
|
56 |
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
|
57 |
|
58 |
+
#st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
|
59 |
+
#colT1,colT2 = st.columns([2,8])
|
60 |
+
st.markdown(""" <style> .fondo {
|
61 |
+
background-image: url("https://www.google.com/url?sa=i&url=https%3A%2F%2Flasmujereseneldeportemexicano.wordpress.com%2F2016%2F11%2F17%2Fpor-que-es-importante-hablar-de-genero%2F&psig=AOvVaw0xG7SVXtJoEpwt-fF5Kykt&ust=1676431557056000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCJiu-a6IlP0CFQAAAAAdAAAAABAJ");
|
62 |
+
background-size: 180%;}
|
63 |
+
</style> """, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
st.markdown(""" <style> .font {
|
67 |
+
font-size:40px ; font-family: 'Cooper Black'; color: #301E67;}
|
68 |
+
</style> """, unsafe_allow_html=True)
|
69 |
|
70 |
+
st.markdown('<p class="font">Análisis de comentarios sexistas en linea</p>', unsafe_allow_html=True)
|
71 |
|
72 |
+
st.markdown(""" <style> .font1 {
|
73 |
+
font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;}
|
74 |
+
</style> """, unsafe_allow_html=True)
|
75 |
+
|
76 |
+
st.markdown(""" <style> .font2 {
|
77 |
+
font-size:16px ; font-family: 'Times New Roman'; color: #5B8FB9;}
|
78 |
+
</style> """, unsafe_allow_html=True)
|
79 |
+
|
80 |
+
st.markdown('<p class="font2">Este proyecto consiste en una aplicación web que utiliza la biblioteca Tweepy de Python para descargar tweets de Twitter, permitiendo buscar Tweets por usuario y por localidad. Luego, utiliza modelos de lenguaje basados en Transformers para analizar los tweets y detectar comentarios sexistas. Los resultados se almacenan en un dataframe para su posterior visualización y análisis. El objetivo del proyecto es identificar y proporcionar información sobre el discurso sexista en línea para combatir la discriminación y el acoso hacia las mujeres y otros grupos marginados, y así informar políticas y prácticas que promuevan la igualdad de género y la inclusión.</p>',unsafe_allow_html=True)
|
81 |
+
|
82 |
+
|
83 |
+
def tweets_usuario(usuario, cant_de_tweets):
|
84 |
+
tabla = []
|
85 |
+
if(cant_de_tweets > 0 and usuario != "" ):
|
86 |
+
try:
|
87 |
+
# Buscar la información del perfil de usuario
|
88 |
+
user = api.get_user(screen_name=usuario)
|
89 |
+
tweets = api.user_timeline(screen_name = usuario,tweet_mode="extended", count= cant_de_tweets)
|
90 |
+
result = []
|
91 |
+
for tweet in tweets:
|
92 |
+
if (tweet.full_text.startswith('RT')):
|
93 |
+
continue
|
94 |
+
else:
|
95 |
+
text = tweet.full_text
|
96 |
+
try:
|
97 |
+
language = detect(text)
|
98 |
+
if language == 'es':
|
99 |
+
datos=limpieza_datos(text)
|
100 |
+
if datos == "":
|
101 |
+
continue
|
102 |
+
else:
|
103 |
+
prediction = pipeline_nlp(datos)
|
104 |
+
for predic in prediction:
|
105 |
+
etiqueta = {'Tweets': datos, 'Prediccion': predic['label'], 'Probabilidad': predic['score']}
|
106 |
+
result.append(etiqueta)
|
107 |
+
except:
|
108 |
+
pass
|
109 |
+
df = pd.DataFrame(result)
|
110 |
+
if df.empty:
|
111 |
+
muestra= st.text("No hay tweets Sexistas a analizar")
|
112 |
+
tabla.append(muestra)
|
113 |
+
else:
|
114 |
+
df.sort_values(by=['Prediccion', 'Probabilidad'], ascending=[False, False], inplace=True)
|
115 |
+
df['Prediccion'] = np.where(df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
|
116 |
+
df['Probabilidad'] = df['Probabilidad'].apply(lambda x: round(x, 3))
|
117 |
+
muestra = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
|
118 |
+
tabla.append(muestra)
|
119 |
+
except Exception as e:
|
120 |
+
muestra = st.text(f"La cuenta {search_words} no existe.")
|
121 |
+
tabla.append(muestra)
|
122 |
+
else:
|
123 |
+
muestra= st.text("Ingrese los parametros correspondientes")
|
124 |
+
tabla.append(muestra)
|
125 |
return tabla
|
126 |
|
127 |
def tweets_localidad(buscar_localidad):
|
128 |
+
tabla = []
|
129 |
+
try:
|
130 |
+
geolocator = Nominatim(user_agent="nombre_del_usuario")
|
131 |
+
location = geolocator.geocode(buscar_localidad)
|
132 |
+
radius = "15km"
|
133 |
+
tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 1000, tweet_mode="extended")
|
134 |
+
result = []
|
135 |
+
for tweet in tweets:
|
136 |
+
if (tweet.full_text.startswith('RT')):
|
137 |
+
continue
|
138 |
+
elif not tweet.full_text.strip():
|
139 |
+
continue
|
140 |
+
else:
|
141 |
+
datos = limpieza_datos(tweet.full_text)
|
142 |
+
prediction = pipeline_nlp(datos)
|
143 |
+
for predic in prediction:
|
144 |
+
etiqueta = {'Tweets': datos,'Prediccion': predic['label'], 'Probabilidad': predic['score']}
|
145 |
+
result.append(etiqueta)
|
146 |
+
df = pd.DataFrame(result)
|
147 |
+
if df.empty:
|
148 |
+
muestra=st.text("No se encontraron tweets sexistas dentro de la localidad")
|
149 |
+
tabla.append(muestra)
|
150 |
+
else:
|
151 |
+
#tabla.append(muestra)
|
152 |
+
#df.sort_values(by=['Prediccion', 'Probabilidad'], ascending=[False, False], inplace=True)
|
153 |
+
df.sort_values(by='Prediccion', ascending=False, inplace=True)
|
154 |
+
df['Prediccion'] = np.where(df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
|
155 |
+
df['Probabilidad'] = df['Probabilidad'].round(3)
|
156 |
+
muestra = st.table(df.reset_index(drop=True).head(10).style.applymap(color_survived, subset=['Prediccion']))
|
157 |
+
tabla.append(muestra)
|
158 |
+
#resultado=df.groupby('Prediccion')['Probabilidad'].sum()
|
159 |
+
with st.container():
|
160 |
+
resultado = df['Prediccion'].head(10).value_counts()
|
161 |
+
colores=["#EE3555","#aae977"]
|
162 |
+
fig, ax = plt.subplots()
|
163 |
+
fig.set_size_inches(2, 2)
|
164 |
+
plt.pie(resultado,labels=resultado.index,autopct='%1.1f%%',colors=colores, textprops={'fontsize': 4})
|
165 |
+
ax.set_title("Porcentajes por Categorias", fontsize=5, fontweight="bold")
|
166 |
+
plt.rcParams.update({'font.size':4, 'font.weight':'bold'})
|
167 |
+
ax.legend()
|
168 |
+
# Muestra el gráfico
|
169 |
+
plt.show()
|
170 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
171 |
+
st.pyplot()
|
172 |
+
|
173 |
+
plt.bar(resultado.index, resultado, color=colores)
|
174 |
+
ax.set_title("Porcentajes por Categorias", fontsize=5, fontweight="bold")
|
175 |
+
plt.rcParams.update({'font.size':4, 'font.weight':'bold'})
|
176 |
+
ax.set_xlabel("Categoría")
|
177 |
+
ax.set_ylabel("Probabilidad")
|
178 |
+
# Muestra el gráfico
|
179 |
+
plt.show()
|
180 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
181 |
+
st.pyplot()
|
182 |
+
|
183 |
+
except AttributeError as e:
|
184 |
+
muestra=st.text("No existe ninguna localidad con ese nombre")
|
185 |
+
tabla.append(muestra)
|
186 |
+
|
187 |
+
return tabla
|
188 |
|
189 |
+
def analizar_frase(frase):
|
190 |
+
language = detect(frase)
|
191 |
+
if frase == "":
|
192 |
+
tabla = st.text("Ingrese una frase")
|
193 |
+
#st.text("Ingrese una frase")
|
194 |
+
elif language == 'es':
|
195 |
+
predictions = pipeline_nlp(frase)
|
196 |
+
# convierte las predicciones en una lista de diccionarios
|
197 |
+
data = [{'Texto': frase, 'Prediccion': prediction['label'], 'Probabilidad': prediction['score']} for prediction in predictions]
|
198 |
+
# crea un DataFrame a partir de la lista de diccionarios
|
199 |
+
df = pd.DataFrame(data)
|
200 |
+
df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
|
201 |
+
# muestra el DataFrame
|
202 |
+
tabla = st.table(df.reset_index(drop=True).head(1).style.applymap(color_survived, subset=['Prediccion']))
|
203 |
+
else:
|
204 |
+
tabla = st.text("Solo Frase en español")
|
205 |
+
|
206 |
+
return tabla
|
207 |
|
|
|
|
|
|
|
208 |
def run():
|
209 |
with st.form("my_form"):
|
210 |
col,buff1, buff2 = st.columns([2,2,1])
|
211 |
st.write("Escoja una Opción")
|
212 |
+
search_words = col.text_input("Introduzca la frase, el usuario o localidad para analizar y pulse el check correspondiente")
|
213 |
+
number_of_tweets = col.number_input('Introduzca número de tweets a analizar del usuario Máximo 50', 0,50,0)
|
214 |
+
termino=st.checkbox('Frase')
|
215 |
usuario=st.checkbox('Usuario')
|
216 |
localidad=st.checkbox('Localidad')
|
217 |
submit_button = col.form_submit_button(label='Analizar')
|
218 |
error =False
|
219 |
+
|
|
|
|
|
|
|
|
|
220 |
if submit_button:
|
221 |
# Condición para el caso de que esten dos check seleccionados
|
222 |
if ( termino == False and usuario == False and localidad == False):
|
|
|
231 |
analizar_frase(search_words)
|
232 |
|
233 |
elif (usuario):
|
234 |
+
tweets_usuario(search_words,number_of_tweets)
|
235 |
elif (localidad):
|
236 |
tweets_localidad(search_words)
|
237 |
+
|
238 |
run()
|