Joshua1808 commited on
Commit
6efc66a
·
1 Parent(s): 1bf00e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -16
app.py CHANGED
@@ -1,8 +1,6 @@
1
  import tweepy as tw
2
  import streamlit as st
3
  import pandas as pd
4
- import torch
5
- import numpy as np
6
  import regex as re
7
  import pysentimiento
8
  import geopy
@@ -13,23 +11,10 @@ from pysentimiento.preprocessing import preprocess_tweet
13
  from geopy.geocoders import Nominatim
14
  from transformers import pipeline
15
 
16
- from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
17
- from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
18
- tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021')
19
- model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
20
 
21
  model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021"
22
  pipeline_nlp = pipeline("text-classification", model=model_checkpoint)
23
 
24
- import torch
25
- if torch.cuda.is_available():
26
- device = torch.device( "cuda")
27
- print('I will use the GPU:', torch.cuda.get_device_name(0))
28
-
29
- else:
30
- print('No GPU available, using the CPU instead.')
31
- device = torch.device("cpu")
32
-
33
 
34
  consumer_key = "BjipwQslVG4vBdy4qK318KnoA"
35
  consumer_secret = "3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ"
@@ -141,7 +126,6 @@ def tweets_localidad(buscar_localidad):
141
  location = geolocator.geocode(buscar_localidad)
142
  radius = "10km"
143
  tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50, tweet_mode="extended")
144
-
145
  tweet_list = [i.full_text for i in tweets]
146
  text= pd.DataFrame(tweet_list)
147
  text[0] = text[0].apply(preprocess_tweet)
@@ -157,6 +141,7 @@ def tweets_localidad(buscar_localidad):
157
  result.append(etiqueta)
158
  df = pd.DataFrame(result)
159
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
 
160
  #df['Probabilidad'] = df['Probabilidad'].apply(lambda x: '{:.2f}%'.format(x))
161
  #df.sort_values(by='Probabilidad', ascending=False, inplace=True)
162
  #df = df.sort_values(by=['Probabilidad', 'Prediccion'], ascending=[False, False])
 
1
  import tweepy as tw
2
  import streamlit as st
3
  import pandas as pd
 
 
4
  import regex as re
5
  import pysentimiento
6
  import geopy
 
11
  from geopy.geocoders import Nominatim
12
  from transformers import pipeline
13
 
 
 
 
 
14
 
15
  model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021"
16
  pipeline_nlp = pipeline("text-classification", model=model_checkpoint)
17
 
 
 
 
 
 
 
 
 
 
18
 
19
  consumer_key = "BjipwQslVG4vBdy4qK318KnoA"
20
  consumer_secret = "3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ"
 
126
  location = geolocator.geocode(buscar_localidad)
127
  radius = "10km"
128
  tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50, tweet_mode="extended")
 
129
  tweet_list = [i.full_text for i in tweets]
130
  text= pd.DataFrame(tweet_list)
131
  text[0] = text[0].apply(preprocess_tweet)
 
141
  result.append(etiqueta)
142
  df = pd.DataFrame(result)
143
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
144
+ #df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
145
  #df['Probabilidad'] = df['Probabilidad'].apply(lambda x: '{:.2f}%'.format(x))
146
  #df.sort_values(by='Probabilidad', ascending=False, inplace=True)
147
  #df = df.sort_values(by=['Probabilidad', 'Prediccion'], ascending=[False, False])