Joshua1808 commited on
Commit
73c054e
·
1 Parent(s): cadaacb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -10
app.py CHANGED
@@ -98,21 +98,18 @@ with colT2:
98
 
99
  def analizar_tweets(search_words, number_of_tweets ):
100
  tweets = api.user_timeline(screen_name = search_words, count= number_of_tweets)
101
- #for tweet in tweets:
102
- # tweet_list = tweet.text
103
 
104
- tweet_list = [i.text for i in tweets]
105
  text= pd.DataFrame(tweet_list)
106
- text[0] = text[0].apply(preprocess_tweet)
107
- text1=text[0].values
 
108
  predictions = pipeline_nlp(text1)
109
- data = [{'Texto': text1, 'Prediccion': prediction['label'], 'Probabilidad': prediction['score']} for prediction in predictions]
110
  # crea un DataFrame a partir de la lista de diccionarios
111
  df = pd.DataFrame(data)
112
-
113
- Tweets =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words]
114
- df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad'])
115
-
116
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
117
 
118
  tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
 
98
 
99
  def analizar_tweets(search_words, number_of_tweets ):
100
  tweets = api.user_timeline(screen_name = search_words, count= number_of_tweets)
101
+ for tweet in tweets:
102
+ tweet_list = tweet.text
103
 
104
+ #tweet_list = [i.text for i in tweets]
105
  text= pd.DataFrame(tweet_list)
106
+ #text[0] = text[0].apply(preprocess_tweet)
107
+ text= text.apply(preprocess_tweet)
108
+ #text1=text[0].values
109
  predictions = pipeline_nlp(text1)
110
+ data = [{'Texto': text, 'Prediccion': prediction['label'], 'Probabilidad': prediction['score']} for prediction in predictions]
111
  # crea un DataFrame a partir de la lista de diccionarios
112
  df = pd.DataFrame(data)
 
 
 
 
113
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
114
 
115
  tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))