Joshua1808 commited on
Commit
8c9c4f2
·
1 Parent(s): a729b39

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -9
app.py CHANGED
@@ -102,7 +102,7 @@ def analizar_tweets(search_words, number_of_tweets ):
102
  tweets = api.user_timeline(screen_name = search_words,tweet_mode="extended", count= number_of_tweets)
103
  tweet_list = [i.full_text for i in tweets]
104
  text= pd.DataFrame(tweet_list)
105
- text[0] = text[0].apply(preprocess_tweet)
106
  text_list = text[0].tolist()
107
  result = []
108
  for text in text_list:
@@ -121,14 +121,10 @@ def analizar_tweets(search_words, number_of_tweets ):
121
  return tabla
122
 
123
  def analizar_frase(frase):
124
-
125
- #palabra = frase.split()
126
- #palabra = frase
127
- predictions = pipeline_nlp(frase)
128
 
 
129
  # convierte las predicciones en una lista de diccionarios
130
  data = [{'Texto': frase, 'Prediccion': prediction['label'], 'Probabilidad': prediction['score']} for prediction in predictions]
131
-
132
  # crea un DataFrame a partir de la lista de diccionarios
133
  df = pd.DataFrame(data)
134
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
@@ -139,7 +135,6 @@ def analizar_frase(frase):
139
  return tabla
140
 
141
  def tweets_localidad(buscar_localidad):
142
-
143
  tabla = pd.DataFrame()
144
  try:
145
  geolocator = Nominatim(user_agent="nombre_del_usuario")
@@ -162,8 +157,6 @@ def tweets_localidad(buscar_localidad):
162
  result.append(etiqueta)
163
  df = pd.DataFrame(result)
164
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
165
- #tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
166
- #df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
167
  df=df[df["Prediccion"] == 'Sexista']
168
  tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion']))
169
 
 
102
  tweets = api.user_timeline(screen_name = search_words,tweet_mode="extended", count= number_of_tweets)
103
  tweet_list = [i.full_text for i in tweets]
104
  text= pd.DataFrame(tweet_list)
105
+ text[0] = text[0].apply(preprocess)
106
  text_list = text[0].tolist()
107
  result = []
108
  for text in text_list:
 
121
  return tabla
122
 
123
  def analizar_frase(frase):
 
 
 
 
124
 
125
+ predictions = pipeline_nlp(frase)
126
  # convierte las predicciones en una lista de diccionarios
127
  data = [{'Texto': frase, 'Prediccion': prediction['label'], 'Probabilidad': prediction['score']} for prediction in predictions]
 
128
  # crea un DataFrame a partir de la lista de diccionarios
129
  df = pd.DataFrame(data)
130
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
 
135
  return tabla
136
 
137
  def tweets_localidad(buscar_localidad):
 
138
  tabla = pd.DataFrame()
139
  try:
140
  geolocator = Nominatim(user_agent="nombre_del_usuario")
 
157
  result.append(etiqueta)
158
  df = pd.DataFrame(result)
159
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
 
 
160
  df=df[df["Prediccion"] == 'Sexista']
161
  tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion']))
162