Spaces:
Runtime error
Runtime error
Commit
·
b4a66f8
1
Parent(s):
0e521b1
Update app.py
Browse files
app.py
CHANGED
@@ -125,7 +125,7 @@ def analizar_tweets(search_words, number_of_tweets ):
|
|
125 |
logits1 = logits1.detach().cpu().numpy()
|
126 |
# Store predictions and true labels
|
127 |
predictions.append(logits1)
|
128 |
-
|
129 |
#flat_predictions = [item for sublist in predictions for item in sublist]
|
130 |
flat_predictions = [item for sublist in predictions for item in sublist]
|
131 |
|
@@ -139,7 +139,7 @@ def analizar_tweets(search_words, number_of_tweets ):
|
|
139 |
df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
140 |
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
|
141 |
|
142 |
-
st.table(df.reset_index(drop=True).head(20).style.applymap(color_survived, subset=['Sexista']))
|
143 |
|
144 |
return df
|
145 |
|
@@ -194,7 +194,7 @@ def analizar_frase(frase):
|
|
194 |
text= pd.DataFrame({'Frase': [frase], 'Prediccion':[flat_predictions], 'Probabilidad':[probabilidad_sexista]})
|
195 |
text['prediccion'] = np.where(text['prediccion'] == 0 , 'No Sexista', 'Sexista')
|
196 |
|
197 |
-
st.table(df.reset_index(drop=True).head(20).style.applymap(color_survived, subset=['Sexista']))
|
198 |
|
199 |
return text
|
200 |
|
|
|
125 |
logits1 = logits1.detach().cpu().numpy()
|
126 |
# Store predictions and true labels
|
127 |
predictions.append(logits1)
|
128 |
+
|
129 |
#flat_predictions = [item for sublist in predictions for item in sublist]
|
130 |
flat_predictions = [item for sublist in predictions for item in sublist]
|
131 |
|
|
|
139 |
df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
140 |
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
|
141 |
|
142 |
+
st.table(df.reset_index(drop=True).head(20).style.applymap(color_survived, subset=['Sexista']))
|
143 |
|
144 |
return df
|
145 |
|
|
|
194 |
text= pd.DataFrame({'Frase': [frase], 'Prediccion':[flat_predictions], 'Probabilidad':[probabilidad_sexista]})
|
195 |
text['prediccion'] = np.where(text['prediccion'] == 0 , 'No Sexista', 'Sexista')
|
196 |
|
197 |
+
st.table(df.reset_index(drop=True).head(20).style.applymap(color_survived, subset=['Sexista']))
|
198 |
|
199 |
return text
|
200 |
|