Spaces:
Running
on
Zero
Running
on
Zero
Avijit Ghosh
commited on
Commit
·
956fa05
1
Parent(s):
e28cd55
added files
Browse files- app.py +161 -0
- css.py +17 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import AutoPipelineForText2Image
|
4 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
5 |
+
from pathlib import Path
|
6 |
+
import stone
|
7 |
+
import requests
|
8 |
+
import io
|
9 |
+
import os
|
10 |
+
from PIL import Image
|
11 |
+
import spaces
|
12 |
+
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import numpy as np
|
15 |
+
from matplotlib.colors import hex2color
|
16 |
+
|
17 |
+
|
18 |
+
pipeline_text2image = None
|
19 |
+
|
20 |
+
@spaces.GPU
|
21 |
+
def loadpipeline():
|
22 |
+
global pipeline_text2image
|
23 |
+
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
|
24 |
+
"stabilityai/sdxl-turbo",
|
25 |
+
torch_dtype=torch.float16,
|
26 |
+
variant="fp16",
|
27 |
+
)
|
28 |
+
pipeline_text2image = pipeline_text2image.to("cuda")
|
29 |
+
|
30 |
+
loadpipeline()
|
31 |
+
|
32 |
+
@spaces.GPU
|
33 |
+
def getimgen(prompt):
|
34 |
+
|
35 |
+
return pipeline_text2image(
|
36 |
+
prompt=prompt,
|
37 |
+
guidance_scale=0.0,
|
38 |
+
num_inference_steps=2
|
39 |
+
).images[0]
|
40 |
+
|
41 |
+
blip_processor = None
|
42 |
+
|
43 |
+
@spaces.GPU
|
44 |
+
def loadblip():
|
45 |
+
global blip_processor
|
46 |
+
global blip_model
|
47 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
48 |
+
blip_model = BlipForConditionalGeneration.from_pretrained(
|
49 |
+
"Salesforce/blip-image-captioning-large",
|
50 |
+
torch_dtype=torch.float16
|
51 |
+
).to("cuda")
|
52 |
+
|
53 |
+
loadblip()
|
54 |
+
|
55 |
+
@spaces.GPU
|
56 |
+
def blip_caption_image(image, prefix):
|
57 |
+
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
58 |
+
out = blip_model.generate(**inputs)
|
59 |
+
return blip_processor.decode(out[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
def genderfromcaption(caption):
|
62 |
+
cc = caption.split()
|
63 |
+
if "man" in cc or "boy" in cc:
|
64 |
+
return "Man"
|
65 |
+
elif "woman" in cc or "girl" in cc:
|
66 |
+
return "Woman"
|
67 |
+
return "Unsure"
|
68 |
+
|
69 |
+
def genderplot(genlist):
|
70 |
+
order = ["Man", "Woman", "Unsure"]
|
71 |
+
|
72 |
+
# Sort the list based on the order of keys
|
73 |
+
words = sorted(genlist, key=lambda x: order.index(x))
|
74 |
+
|
75 |
+
# Define colors for each category
|
76 |
+
colors = {"Man": "lightgreen", "Woman": "darkgreen", "Unsure": "lightgrey"}
|
77 |
+
|
78 |
+
# Map each word to its corresponding color
|
79 |
+
word_colors = [colors[word] for word in words]
|
80 |
+
|
81 |
+
# Plot the colors in a grid with reduced spacing
|
82 |
+
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
83 |
+
|
84 |
+
# Adjust spacing between subplots
|
85 |
+
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
86 |
+
|
87 |
+
for i, ax in enumerate(axes.flat):
|
88 |
+
ax.set_axis_off()
|
89 |
+
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=word_colors[i]))
|
90 |
+
|
91 |
+
return fig
|
92 |
+
|
93 |
+
def skintoneplot(hex_codes):
|
94 |
+
# Convert hex codes to RGB values
|
95 |
+
rgb_values = [hex2color(hex_code) for hex_code in hex_codes]
|
96 |
+
|
97 |
+
# Calculate luminance for each color
|
98 |
+
luminance_values = [0.299 * r + 0.587 * g + 0.114 * b for r, g, b in rgb_values]
|
99 |
+
|
100 |
+
# Sort hex codes based on luminance in descending order (dark to light)
|
101 |
+
sorted_hex_codes = [code for _, code in sorted(zip(luminance_values, hex_codes), reverse=True)]
|
102 |
+
|
103 |
+
# Plot the colors in a grid with reduced spacing
|
104 |
+
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
105 |
+
|
106 |
+
# Adjust spacing between subplots
|
107 |
+
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
108 |
+
|
109 |
+
for i, ax in enumerate(axes.flat):
|
110 |
+
ax.set_axis_off()
|
111 |
+
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=sorted_hex_codes[i]))
|
112 |
+
|
113 |
+
return fig
|
114 |
+
|
115 |
+
@spaces.GPU
|
116 |
+
def generate_images_plots(prompt):
|
117 |
+
foldername = "temp"
|
118 |
+
# Generate 10 images
|
119 |
+
images = [getimgen(prompt) for _ in range(10)]
|
120 |
+
|
121 |
+
Path(foldername).mkdir(parents=True, exist_ok=True)
|
122 |
+
|
123 |
+
genders = []
|
124 |
+
skintones = []
|
125 |
+
|
126 |
+
for image, i in zip(images, range(10)):
|
127 |
+
prompt_prefix = "photo of a "
|
128 |
+
caption = blip_caption_image(image, prefix=prompt_prefix)
|
129 |
+
image.save(f"{foldername}/image_{i}.png")
|
130 |
+
try:
|
131 |
+
skintoneres = stone.process(f"{foldername}/image_{i}.png", return_report_image=False)
|
132 |
+
tone = skintoneres['faces'][0]['dominant_colors'][0]['color']
|
133 |
+
skintones.append(tone)
|
134 |
+
except:
|
135 |
+
skintones.append(None)
|
136 |
+
|
137 |
+
genders.append(genderfromcaption(caption))
|
138 |
+
|
139 |
+
print(genders, skintones)
|
140 |
+
|
141 |
+
return images, skintoneplot(skintones), genderplot(genders)
|
142 |
+
|
143 |
+
|
144 |
+
with gr.Blocks(title = "Skin Tone and Gender bias in SDXL Demo - Inference API") as demo:
|
145 |
+
|
146 |
+
gr.Markdown("# Skin Tone and Gender bias in SDXL Demo")
|
147 |
+
|
148 |
+
prompt = gr.Textbox(label="Enter the Prompt")
|
149 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery",
|
150 |
+
columns=[5], rows=[2], object_fit="contain", height="auto")
|
151 |
+
btn = gr.Button("Generate images", scale=0)
|
152 |
+
with gr.Row(equal_height=True):
|
153 |
+
skinplot = gr.Plot(label="Skin Tone")
|
154 |
+
genplot = gr.Plot(label="Gender")
|
155 |
+
|
156 |
+
|
157 |
+
btn.click(generate_images_plots, inputs = prompt, outputs = [gallery, skinplot, genplot])
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
demo.launch(debug=True)
|
css.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
/* Full width space */
|
3 |
+
a {
|
4 |
+
text-decoration: underline;
|
5 |
+
# text-decoration-style: dotted;
|
6 |
+
}
|
7 |
+
|
8 |
+
h1, h2, h3, h4, h5, h6 {
|
9 |
+
margin: 0;
|
10 |
+
}
|
11 |
+
|
12 |
+
.tag {
|
13 |
+
padding: .1em .3em;
|
14 |
+
background-color: lightgrey;
|
15 |
+
border-radius: 12px;
|
16 |
+
}
|
17 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
diffusers
|
4 |
+
transformers
|
5 |
+
spaces
|
6 |
+
skin-tone-classifier
|
7 |
+
matplotlib
|
8 |
+
pillow
|
9 |
+
numpy
|