Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,66 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
import matplotlib.pyplot as plt
|
4 |
-
import
|
5 |
-
|
6 |
-
import torch
|
7 |
from PIL import Image
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
def main():
|
70 |
-
option = st.selectbox("Which model should we use?", ("facebook/detr-resnet-50", "facebook/detr-resnet-101"))
|
71 |
-
feature_extractor, model = get_hf_components(option)
|
72 |
-
url = st.text_input("URL to some image", "http://images.cocodataset.org/val2017/000000039769.jpg")
|
73 |
-
img = get_img_from_url(url)
|
74 |
-
processed_outputs = make_prediction(img, feature_extractor, model)
|
75 |
-
threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.7)
|
76 |
-
viz_img = visualize_prediction(img, processed_outputs, threshold, model.config.id2label)
|
77 |
-
st.image(viz_img)
|
78 |
-
|
79 |
-
|
80 |
-
if __name__ == "__main__":
|
81 |
-
main()
|
|
|
1 |
+
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection
|
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
+
import matplotlib.patches as patches
|
4 |
+
from random import choice
|
|
|
5 |
from PIL import Image
|
6 |
+
import os
|
7 |
+
from matplotlib import rcParams, font_manager
|
8 |
+
import streamlit as st
|
9 |
+
import urllib.request
|
10 |
+
import requests
|
11 |
+
|
12 |
+
extractor = AutoFeatureExtractor.from_pretrained("facebook/detr-resnet-101")
|
13 |
+
|
14 |
+
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-101")
|
15 |
+
|
16 |
+
from transformers import pipeline
|
17 |
+
|
18 |
+
pipe = pipeline('object-detection', model=model, feature_extractor=extractor)
|
19 |
+
|
20 |
+
img_url = st.text_input('Image URL', 'https://images.unsplash.com/photo-1556911220-bff31c812dba?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=2468&q=80')
|
21 |
+
|
22 |
+
st.caption('Downloading Image...')
|
23 |
+
|
24 |
+
img_data = requests.get(img_url).content
|
25 |
+
with open('detect.jpg', 'wb') as handler:
|
26 |
+
handler.write(img_data)
|
27 |
+
|
28 |
+
st.caption('Running Detection...')
|
29 |
+
|
30 |
+
output = pipe(img_url)
|
31 |
+
|
32 |
+
st.caption('Adding Predictions to Image...')
|
33 |
+
|
34 |
+
fpath = "Poppins-SemiBold.ttf"
|
35 |
+
prop = font_manager.FontProperties(fname=fpath)
|
36 |
+
|
37 |
+
img = Image.open('detect.jpg')
|
38 |
+
plt.figure(dpi=2400)
|
39 |
+
|
40 |
+
# Create figure and axes
|
41 |
+
fig, ax = plt.subplots()
|
42 |
+
|
43 |
+
# Display the image
|
44 |
+
ax.imshow(img)
|
45 |
+
|
46 |
+
colors = ["#ef4444", "#f97316", "#eab308", "#84cc16", "#06b6d4", "#6366f1"]
|
47 |
+
|
48 |
+
# Create a Rectangle patch
|
49 |
+
for prediction in output:
|
50 |
+
selected_color = choice(colors)
|
51 |
+
x, y, w, h = prediction['box']['xmin'], prediction['box']['ymin'], prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
|
52 |
+
rect = patches.FancyBboxPatch((x, y), w, h, linewidth=1.25, edgecolor=selected_color, facecolor='none', boxstyle="round,pad=-0.0040,rounding_size=10",)
|
53 |
+
ax.add_patch(rect)
|
54 |
+
plt.text(x, y-25, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontsize=5, color=selected_color, fontproperties=prop)
|
55 |
+
|
56 |
+
plt.axis('off')
|
57 |
+
|
58 |
+
plt.savefig('detect-bbox.jpg', dpi=1200, bbox_inches='tight')
|
59 |
+
|
60 |
+
image = Image.open('detect-bbox.jpg')
|
61 |
+
|
62 |
+
st.image(image, caption='DETR Image')
|
63 |
+
|
64 |
+
plt.show()
|
65 |
+
|
66 |
+
st.caption('Done!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|