File size: 1,770 Bytes
c8ab9aa
e2374a9
d22aa3e
e2374a9
 
c897f8f
 
 
 
 
e2374a9
 
 
c8ab9aa
 
 
d22aa3e
 
c8ab9aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22aa3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
import os
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login

# Read the Hugging Face API token from the environment variable
api_token = os.getenv("HF_API_TOKEN")
if not api_token:
    st.error("Hugging Face API token is missing. Please add it to the secrets in the Space settings.")
    st.stop()

# Login using your Hugging Face token
login(token=api_token)

model_id = "meta-llama/Meta-Llama-3-8B"

# Initialize the model pipeline with authentication
pipe = pipeline("text-generation", model=model_id, use_auth_token=api_token)

# Display the logo and title
st.image("logo.jpg", width=300)
st.title("Coach Virtual PRODI")

# Initialize a session state variable for history if it doesn't exist
if 'history' not in st.session_state:
    st.session_state['history'] = []

# Function to update the conversation history
def update_history(user_input, ai_response):
    st.session_state['history'].append(("User", user_input))
    st.session_state['history'].append(("AI", ai_response))

# Display the conversation history
for speaker, text in st.session_state['history']:
    if speaker == "User":
        st.text_input("Usuario", value=text, disabled=True)
    else:
        st.text_area("PRODI", value=text, height=75, disabled=True)

# Chat input for user prompt
user_input = st.text_input("¿Cómo te puedo ayudar hoy?")
if user_input:
    with st.spinner("Generando respuesta..."):
        # Get the AI's response
        ai_response = pipe(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
        
        # Update the conversation history
        update_history(user_input, ai_response)
        
        # Display the AI's response
        st.write(ai_response)