Spaces:
Paused
Paused
File size: 1,770 Bytes
c8ab9aa e2374a9 d22aa3e e2374a9 c897f8f e2374a9 c8ab9aa d22aa3e c8ab9aa d22aa3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import streamlit as st
import os
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
# Read the Hugging Face API token from the environment variable
api_token = os.getenv("HF_API_TOKEN")
if not api_token:
st.error("Hugging Face API token is missing. Please add it to the secrets in the Space settings.")
st.stop()
# Login using your Hugging Face token
login(token=api_token)
model_id = "meta-llama/Meta-Llama-3-8B"
# Initialize the model pipeline with authentication
pipe = pipeline("text-generation", model=model_id, use_auth_token=api_token)
# Display the logo and title
st.image("logo.jpg", width=300)
st.title("Coach Virtual PRODI")
# Initialize a session state variable for history if it doesn't exist
if 'history' not in st.session_state:
st.session_state['history'] = []
# Function to update the conversation history
def update_history(user_input, ai_response):
st.session_state['history'].append(("User", user_input))
st.session_state['history'].append(("AI", ai_response))
# Display the conversation history
for speaker, text in st.session_state['history']:
if speaker == "User":
st.text_input("Usuario", value=text, disabled=True)
else:
st.text_area("PRODI", value=text, height=75, disabled=True)
# Chat input for user prompt
user_input = st.text_input("¿Cómo te puedo ayudar hoy?")
if user_input:
with st.spinner("Generando respuesta..."):
# Get the AI's response
ai_response = pipe(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
# Update the conversation history
update_history(user_input, ai_response)
# Display the AI's response
st.write(ai_response)
|