Spaces:
Sleeping
Sleeping
import streamlit as st | |
import transformers | |
# Replace "facebook/bart-base" with the desired LLM identifier from Hugging Face | |
model_name = "facebook/bart-base" | |
llm = transformers.pipeline("text-generation", model=model_name) | |
# Display the logo and title | |
st.image("logo.jpg", width=300) | |
st.title("Coach Virtual PRODI") | |
# Initialize a session state variable for history if it doesn't exist | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# Function to update the conversation history | |
def update_history(user_input, ai_response): | |
st.session_state['history'].append(("User", user_input)) | |
st.session_state['history'].append(("AI", ai_response)) | |
# Display the conversation history | |
for speaker, text in st.session_state['history']: | |
if speaker == "User": | |
st.text_input("Usuario", value=text, disabled=True) | |
else: | |
st.text_area("PRODI", value=text, height=75, disabled=True) | |
# Chat input for user prompt | |
user_input = st.chat_input("¿Cómo te puedo ayudar hoy?") | |
if user_input: | |
with st.spinner("Generando respuesta..."): | |
# Get the AI's response using the loaded llm object | |
ai_response = llm(user_input, max_length=1000, do_sample=True, top_k=50, top_p=0.9)["generated_text"][0] | |
# Update the conversation history | |
update_history(user_input, ai_response) | |
# Display the AI's response | |
st.write(ai_response) |