Spaces:
Sleeping
Sleeping
File size: 10,064 Bytes
21b4654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import numpy as np
import streamlit as st
import requests
import pydeck as pdk
import pandas as pd
import geopandas as gpd
import plotly.express as px
import folium
import webbrowser
from shapely.geometry import Point
from folium import plugins
from streamlit_folium import st_folium
def load_polygon(filepath):
return gpd.read_file(filepath)
path='Z:/Shared/Axeria Shared/Pricing/Immopolis Pricing Review/DATA/'
# Polygon1 = load_polygon(path + 'risk_zones.shp')
# Polygon2 = load_polygon(path + 'Flooding/n_inondable_01_01for_s.shp')
# Polygon3 = load_polygon(path + 'ZUS/ZUS_FRM_BDA09_L93.shp')
#
# Initialize polygons if not already in session state
if 'polygons' not in st.session_state:
st.session_state.polygons = {
"Polygon1": load_polygon(path+'risk_zones.shp'),
"Polygon2": load_polygon(path+'Flooding/n_inondable_01_01for_s.shp'),
"Polygon3": load_polygon(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
}
if 'polygons' in st.session_state:
st.session_state.polygons["Polygon1"]['geometry'] = st.session_state.polygons["Polygon1"]['geometry'].to_crs(epsg=4326)
st.session_state.polygons["Polygon2"]['geometry'] = st.session_state.polygons["Polygon2"]['geometry'].to_crs(epsg=4326)
st.session_state.polygons["Polygon3"]['geometry'] = st.session_state.polygons["Polygon3"]['geometry'].to_crs(epsg=4326)
#Polygon1['geometry'] = Polygon1['geometry'].to_crs(epsg=4326)
#Polygon2=load_polygon(path+'Flooding/n_inondable_01_01for_s.shp')
# Polygon1=load_polygon(path+'risk_zones.shp')
# Polygon1['geometry'] = Polygon1['geometry'].to_crs(epsg=4326)
# Polygon2=load_polygon(path+'Flooding/n_inondable_01_01for_s.shp')
# Polygon3=load_polygon(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
# # Function to plot an interactive histogram
# # fig = px.histogram(polygon_gdf['poverty'], nbins=20)
# # st.plotly_chart(fig)
# fig = px.ecdf(polygon_gdf['poverty'])
# fig.show()
# # # #28% --> 5% of squares
# # #
# # #
# fig = px.ecdf(polygon_gdf['densite'])
# # #9000 --> 5% of squares
# fig.show()
# #
# #
# #
# # #Load geographical layers
#
# zus=gpd.read_file(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
# polygon_gdf = gpd.read_file(path+'Geo_metropole/Filosofi2017_carreaux_nivNaturel_met.shp')
# polygon_gdf2 = gpd.read_file(path+'Filosofi2017_carreaux_1km_shp/Filosofi2017_carreaux_1km_met.shp')
# polygon_gdf2['densite']=polygon_gdf2['Ind']
# polygon_gdf2['poverty']=polygon_gdf2['Men_pauv']/polygon_gdf2['Men']
# polygon_gdf['tmaille']=pd.to_numeric(polygon_gdf['tmaille'])
# polygon_gdf['tmaillem2']=polygon_gdf['tmaille']**2
# polygon_gdf['densite']=1000000*polygon_gdf['Ind']/polygon_gdf['tmaillem2']
# polygon_gdf['poverty']=polygon_gdf['Men_pauv']/polygon_gdf['Men']
# risk_zones2=polygon_gdf2[polygon_gdf2.poverty>=0.30]
# risk_zones2=risk_zones2[risk_zones2.densite>=7000]
#risk_zones2.to_file(filename=path+'risk_zones2.shp', driver='ESRI Shapefile')
# risk_zones=gpd.read_file(filename=path+'risk_zones.shp')
# flooding = gpd.read_file(path+'Flooding/n_inondable_01_01for_s.shp')
#
# #
# #
# # #FLooding zones
#risk_zones=polygon_gdf[polygon_gdf.poverty>=0.28]
# risk_zones=risk_zones[risk_zones.densite>=7000]
#
# risk_zones.to_file(filename=path+'risk_zones.shp', driver='ESRI Shapefile')
#
# # #
# m =folium.Map(location = [48.885805,2.366191], zoom_start = 6)
# folium.GeoJson(Polygon2[Polygon2.index<1000],color='blue').add_to(m)
#folium.CircleMarker([48.885805, 2.366191],radius=1,color='red').add_to(m)
# folium.GeoJson(flooding[flo,color='yellow').add_to(m)
# #folium.GeoJson(risk_zones2,color='orange').add_to(m)
# folium.GeoJson(zus).add_to(m)
# #
# #
# # # m.save(path+"map2.html")
# # # webbrowser.open_new_tab(path+"map2.html")
# # #
# # #
# policies = pd.read_pickle(path+"DB_immoplus.pkl")
# geometry = [Point(xy) for xy in zip(policies['longitude'], policies['latitude'])]
# policies_geo = gpd.GeoDataFrame(policies, geometry=geometry,crs="EPSG:4326")
# #
# large_claims=policies_geo[policies_geo.Charge>20000]
# large_claims=large_claims.dropna(subset=['latitude'])
# # #
# for arr in large_claims["geometry"]:
# lat=arr.y
# lon=arr.x
# folium.CircleMarker([lat, lon],radius=1,color='red').add_to(m)
# m.save(path+"map2.html")
# webbrowser.open_new_tab(path+"map2.html")
#
#
# sum(risk_zones['tmaille'])/sum(polygon_gdf['tmaille'])*100
# sum(risk_zones['Ind'])/sum(polygon_gdf['Ind'])*100
# #
# #
# #
# # flooding["zone_inond_freq"]=1
# # zus['flag_ZUS']=1
# # Function to get address suggestions from the Autocomplete API
def create_geodataframe(longitude, latitude):
geometry = [Point(longitude, latitude)]
gdf = gpd.GeoDataFrame(geometry=geometry, crs="EPSG:4326")
return gdf
def get_address_suggestions(query):
if not query:
return []
url = "https://api-adresse.data.gouv.fr/search/"
params = {'q': query, 'autocomplete': 1, 'limit': 5}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
suggestions = [{'label': feature['properties']['label'], 'coordinates': feature['geometry']['coordinates']}
for feature in data['features']]
return suggestions
else:
return []
# Function to create a map
def create_map(latitude, longitude):
map_data = pd.DataFrame({
'lat': [latitude],
'lon': [longitude]
})
st.pydeck_chart(pdk.Deck(
map_style='mapbox://styles/mapbox/light-v9',
initial_view_state=pdk.ViewState(
latitude=latitude,
longitude=longitude,
zoom=11,
pitch=50,
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=map_data,
get_position='[lon, lat]',
get_color='[200, 30, 0, 160]',
get_radius=200,
),
],
))
# Streamlit app layout
def main():
st.title("Immopolis Adress validation APP")
# Session state to store the current suggestions
if 'suggestions' not in st.session_state:
st.session_state.suggestions = []
# Text input for address with on_change callback
query = st.text_input("Enter your address", "", key="query")
# Update suggestions when query changes
st.session_state.suggestions = get_address_suggestions(query)
# Display autocomplete suggestions
if query:
selected_suggestion = st.selectbox("Did you mean:", [s['label'] for s in st.session_state.suggestions], index=0,
key="selected_suggestion")
else:
selected_suggestion = ""
if selected_suggestion:
selected_data = next((item for item in st.session_state.suggestions if item['label'] == selected_suggestion),
None)
if selected_data and 'coordinates' in selected_data:
longitude, latitude = selected_data['coordinates']
st.write(f"Latitude: {latitude}, Longitude: {longitude}")
#m = folium.Map(location=[longitude, latitude], zoom_start=6)
gdf = create_geodataframe(longitude, latitude)
gdf['geometry'] = gdf['geometry'].to_crs(epsg=4326)
st.write(gdf)
#polygon_name1 = gdf.within(st.session_state.polygons["Polygon1"])
#st.write(polygon_name1[polygon_name1.isna()])
#polygon_name2 = gdf.within(st.session_state.polygons["Polygon2"])
polygon_name1=gpd.sjoin(gdf, st.session_state.polygons["Polygon1"], how="left", predicate="within")['index_right']
st.write(polygon_name1)
polygon_name2=gpd.sjoin(gdf, st.session_state.polygons["Polygon2"], how="left", predicate="within")['index_right']
st.write(polygon_name2)
polygon_name3=gpd.sjoin(gdf, st.session_state.polygons["Polygon3"], how="left", predicate="within")['index_right']
st.write(polygon_name3)
#st.write(polygon_name2)
#st.write(np.isnan(polygon_name2[0]))
#st.write(polygon_name2)
#latitude=48.885805
# longitude=2.366191
#polygon_name3 = gdf.within(st.session_state.polygons["Polygon3"])
# folium.GeoJson(risk_zones).add_to(m)
#gdf=policies_geo[1:1]
#m =folium.Map(location = [longitude, latitude], zoom_start = 10)
m=folium.Map([gdf['geometry'].y, gdf['geometry'].x],zoom_start = 15)
folium.CircleMarker([gdf['geometry'].y, gdf['geometry'].x], radius=1, color='red').add_to(m)
#folium.GeoJson(st.session_state.polygons["Polygon2"], color='blue').add_to(m)
folium.GeoJson(st.session_state.polygons["Polygon3"], color='orange').add_to(m)
if not np.isnan(polygon_name1[0]):
folium.GeoJson(st.session_state.polygons["Polygon1"][st.session_state.polygons["Polygon1"].index==polygon_name1[0]],color='yellow').add_to(m)
if not np.isnan(polygon_name2[0]):
folium.GeoJson(st.session_state.polygons["Polygon2"][st.session_state.polygons["Polygon2"].index==polygon_name2[0]],color='blue').add_to(m)
if not np.isnan(polygon_name3[0]):
folium.GeoJson(st.session_state.polygons["Polygon3"][st.session_state.polygons["Polygon3"].index==polygon_name3[0]],color='orange').add_to(m)
point = Point(longitude, latitude)
st_folium(m, width=700, height=500)
if not np.isnan(polygon_name1[0]):
st.markdown(f"Address is High risk zone", unsafe_allow_html=True)
if not np.isnan(polygon_name2[0]):
st.markdown(f"Address is in flooding area", unsafe_allow_html=True)
if not np.isnan(polygon_name3[0]):
st.markdown(f"Address is in sensitive area", unsafe_allow_html=True)
if np.isnan(polygon_name1[0]) and np.isnan(polygon_name2[0]) and np.isnan(polygon_name3[0]):
st.markdown(f"Risk check OK", unsafe_allow_html=True)
# Run the app
if __name__ == "__main__":
main()
|