File size: 10,064 Bytes
21b4654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import streamlit as st
import requests
import pydeck as pdk
import pandas as pd
import geopandas as gpd
import plotly.express as px
import folium
import webbrowser
from shapely.geometry import Point
from folium import plugins
from streamlit_folium import st_folium

def load_polygon(filepath):
    return gpd.read_file(filepath)
path='Z:/Shared/Axeria Shared/Pricing/Immopolis Pricing Review/DATA/'
# Polygon1 = load_polygon(path + 'risk_zones.shp')
# Polygon2 = load_polygon(path + 'Flooding/n_inondable_01_01for_s.shp')
# Polygon3 = load_polygon(path + 'ZUS/ZUS_FRM_BDA09_L93.shp')
#

# Initialize polygons if not already in session state
if 'polygons' not in st.session_state:
    st.session_state.polygons = {
        "Polygon1": load_polygon(path+'risk_zones.shp'),
        "Polygon2": load_polygon(path+'Flooding/n_inondable_01_01for_s.shp'),
        "Polygon3": load_polygon(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
    }

if 'polygons'  in st.session_state:
    st.session_state.polygons["Polygon1"]['geometry'] = st.session_state.polygons["Polygon1"]['geometry'].to_crs(epsg=4326)
    st.session_state.polygons["Polygon2"]['geometry'] = st.session_state.polygons["Polygon2"]['geometry'].to_crs(epsg=4326)
    st.session_state.polygons["Polygon3"]['geometry'] = st.session_state.polygons["Polygon3"]['geometry'].to_crs(epsg=4326)

    #Polygon1['geometry'] = Polygon1['geometry'].to_crs(epsg=4326)
    #Polygon2=load_polygon(path+'Flooding/n_inondable_01_01for_s.shp')
    # Polygon1=load_polygon(path+'risk_zones.shp')
    # Polygon1['geometry'] = Polygon1['geometry'].to_crs(epsg=4326)
    # Polygon2=load_polygon(path+'Flooding/n_inondable_01_01for_s.shp')
    # Polygon3=load_polygon(path+'ZUS/ZUS_FRM_BDA09_L93.shp')

# # Function to plot an interactive histogram
# # fig = px.histogram(polygon_gdf['poverty'], nbins=20)
# # st.plotly_chart(fig)
# fig = px.ecdf(polygon_gdf['poverty'])
# fig.show()
# # # #28% --> 5% of squares
# # #
# # #
# fig = px.ecdf(polygon_gdf['densite'])
#  # #9000 --> 5% of squares
# fig.show()
# #
# #
# #
# # #Load geographical layers
#

# zus=gpd.read_file(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
# polygon_gdf = gpd.read_file(path+'Geo_metropole/Filosofi2017_carreaux_nivNaturel_met.shp')
# polygon_gdf2 = gpd.read_file(path+'Filosofi2017_carreaux_1km_shp/Filosofi2017_carreaux_1km_met.shp')
# polygon_gdf2['densite']=polygon_gdf2['Ind']
# polygon_gdf2['poverty']=polygon_gdf2['Men_pauv']/polygon_gdf2['Men']
# polygon_gdf['tmaille']=pd.to_numeric(polygon_gdf['tmaille'])
# polygon_gdf['tmaillem2']=polygon_gdf['tmaille']**2
# polygon_gdf['densite']=1000000*polygon_gdf['Ind']/polygon_gdf['tmaillem2']
# polygon_gdf['poverty']=polygon_gdf['Men_pauv']/polygon_gdf['Men']


# risk_zones2=polygon_gdf2[polygon_gdf2.poverty>=0.30]
# risk_zones2=risk_zones2[risk_zones2.densite>=7000]
#risk_zones2.to_file(filename=path+'risk_zones2.shp', driver='ESRI Shapefile')

# risk_zones=gpd.read_file(filename=path+'risk_zones.shp')
# flooding = gpd.read_file(path+'Flooding/n_inondable_01_01for_s.shp')
#
# #
# #
# # #FLooding zones
#risk_zones=polygon_gdf[polygon_gdf.poverty>=0.28]
# risk_zones=risk_zones[risk_zones.densite>=7000]
#
# risk_zones.to_file(filename=path+'risk_zones.shp', driver='ESRI Shapefile')
#
# # #
# m =folium.Map(location = [48.885805,2.366191], zoom_start = 6)
# folium.GeoJson(Polygon2[Polygon2.index<1000],color='blue').add_to(m)
#folium.CircleMarker([48.885805, 2.366191],radius=1,color='red').add_to(m)
# folium.GeoJson(flooding[flo,color='yellow').add_to(m)
# #folium.GeoJson(risk_zones2,color='orange').add_to(m)
# folium.GeoJson(zus).add_to(m)
# #
# #
# # # m.save(path+"map2.html")
# # # webbrowser.open_new_tab(path+"map2.html")
# # #
# # #
# policies = pd.read_pickle(path+"DB_immoplus.pkl")
# geometry = [Point(xy) for xy in zip(policies['longitude'], policies['latitude'])]
# policies_geo = gpd.GeoDataFrame(policies, geometry=geometry,crs="EPSG:4326")
# #
# large_claims=policies_geo[policies_geo.Charge>20000]
# large_claims=large_claims.dropna(subset=['latitude'])
# # #
# for arr in large_claims["geometry"]:
#      lat=arr.y
#      lon=arr.x
#      folium.CircleMarker([lat, lon],radius=1,color='red').add_to(m)
# m.save(path+"map2.html")
# webbrowser.open_new_tab(path+"map2.html")
#
#
# sum(risk_zones['tmaille'])/sum(polygon_gdf['tmaille'])*100
# sum(risk_zones['Ind'])/sum(polygon_gdf['Ind'])*100

# #
# #
# #
# # flooding["zone_inond_freq"]=1
# # zus['flag_ZUS']=1
# # Function to get address suggestions from the Autocomplete API
def create_geodataframe(longitude, latitude):
    geometry = [Point(longitude, latitude)]
    gdf = gpd.GeoDataFrame(geometry=geometry, crs="EPSG:4326")
    return gdf

def get_address_suggestions(query):
    if not query:
        return []

    url = "https://api-adresse.data.gouv.fr/search/"
    params = {'q': query, 'autocomplete': 1, 'limit': 5}
    response = requests.get(url, params=params)

    if response.status_code == 200:
        data = response.json()
        suggestions = [{'label': feature['properties']['label'], 'coordinates': feature['geometry']['coordinates']}
                       for feature in data['features']]
        return suggestions
    else:
        return []


# Function to create a map
def create_map(latitude, longitude):
    map_data = pd.DataFrame({
        'lat': [latitude],
        'lon': [longitude]
    })

    st.pydeck_chart(pdk.Deck(
        map_style='mapbox://styles/mapbox/light-v9',
        initial_view_state=pdk.ViewState(
            latitude=latitude,
            longitude=longitude,
            zoom=11,
            pitch=50,
        ),
        layers=[
            pdk.Layer(
                'ScatterplotLayer',
                data=map_data,
                get_position='[lon, lat]',
                get_color='[200, 30, 0, 160]',
                get_radius=200,
            ),
        ],
    ))


# Streamlit app layout
def main():
    st.title("Immopolis Adress validation APP")

    # Session state to store the current suggestions
    if 'suggestions' not in st.session_state:
        st.session_state.suggestions = []

    # Text input for address with on_change callback
    query = st.text_input("Enter your address", "", key="query")

    # Update suggestions when query changes
    st.session_state.suggestions = get_address_suggestions(query)

    # Display autocomplete suggestions
    if query:
        selected_suggestion = st.selectbox("Did you mean:", [s['label'] for s in st.session_state.suggestions], index=0,
                                           key="selected_suggestion")
    else:
        selected_suggestion = ""


    if selected_suggestion:
        selected_data = next((item for item in st.session_state.suggestions if item['label'] == selected_suggestion),
                             None)
        if selected_data and 'coordinates' in selected_data:
            longitude, latitude = selected_data['coordinates']
            st.write(f"Latitude: {latitude}, Longitude: {longitude}")
            #m = folium.Map(location=[longitude, latitude], zoom_start=6)
            gdf = create_geodataframe(longitude, latitude)
            gdf['geometry'] = gdf['geometry'].to_crs(epsg=4326)
            st.write(gdf)
            #polygon_name1 = gdf.within(st.session_state.polygons["Polygon1"])
            #st.write(polygon_name1[polygon_name1.isna()])
            #polygon_name2 = gdf.within(st.session_state.polygons["Polygon2"])
            polygon_name1=gpd.sjoin(gdf, st.session_state.polygons["Polygon1"], how="left", predicate="within")['index_right']
            st.write(polygon_name1)
            polygon_name2=gpd.sjoin(gdf, st.session_state.polygons["Polygon2"], how="left", predicate="within")['index_right']
            st.write(polygon_name2)

            polygon_name3=gpd.sjoin(gdf, st.session_state.polygons["Polygon3"], how="left", predicate="within")['index_right']
            st.write(polygon_name3)

            #st.write(polygon_name2)
            #st.write(np.isnan(polygon_name2[0]))

            #st.write(polygon_name2)
            #latitude=48.885805
            # longitude=2.366191
            #polygon_name3 = gdf.within(st.session_state.polygons["Polygon3"])
#           folium.GeoJson(risk_zones).add_to(m)
            #gdf=policies_geo[1:1]
            #m =folium.Map(location = [longitude, latitude], zoom_start = 10)
            m=folium.Map([gdf['geometry'].y, gdf['geometry'].x],zoom_start = 15)
            folium.CircleMarker([gdf['geometry'].y, gdf['geometry'].x], radius=1, color='red').add_to(m)
            #folium.GeoJson(st.session_state.polygons["Polygon2"], color='blue').add_to(m)
            folium.GeoJson(st.session_state.polygons["Polygon3"], color='orange').add_to(m)

            if not np.isnan(polygon_name1[0]):
                folium.GeoJson(st.session_state.polygons["Polygon1"][st.session_state.polygons["Polygon1"].index==polygon_name1[0]],color='yellow').add_to(m)
            if not np.isnan(polygon_name2[0]):
                folium.GeoJson(st.session_state.polygons["Polygon2"][st.session_state.polygons["Polygon2"].index==polygon_name2[0]],color='blue').add_to(m)
            if not np.isnan(polygon_name3[0]):
                folium.GeoJson(st.session_state.polygons["Polygon3"][st.session_state.polygons["Polygon3"].index==polygon_name3[0]],color='orange').add_to(m)

            point = Point(longitude, latitude)
            st_folium(m, width=700, height=500)


            if not np.isnan(polygon_name1[0]):
                st.markdown(f"Address is High risk zone", unsafe_allow_html=True)

            if not np.isnan(polygon_name2[0]):
                st.markdown(f"Address is in flooding area", unsafe_allow_html=True)

            if not np.isnan(polygon_name3[0]):
                st.markdown(f"Address is in sensitive area", unsafe_allow_html=True)

            if np.isnan(polygon_name1[0]) and np.isnan(polygon_name2[0])  and np.isnan(polygon_name3[0]):
                st.markdown(f"Risk check OK", unsafe_allow_html=True)


# Run the app
if __name__ == "__main__":
    main()