Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from streamlit_folium import st_folium
|
|
13 |
|
14 |
def load_polygon(filepath):
|
15 |
return gpd.read_file(filepath)
|
16 |
-
path='
|
17 |
# Polygon1 = load_polygon(path + 'risk_zones.shp')
|
18 |
# Polygon2 = load_polygon(path + 'Flooding/n_inondable_01_01for_s.shp')
|
19 |
# Polygon3 = load_polygon(path + 'ZUS/ZUS_FRM_BDA09_L93.shp')
|
@@ -32,93 +32,6 @@ if 'polygons' in st.session_state:
|
|
32 |
st.session_state.polygons["Polygon2"]['geometry'] = st.session_state.polygons["Polygon2"]['geometry'].to_crs(epsg=4326)
|
33 |
st.session_state.polygons["Polygon3"]['geometry'] = st.session_state.polygons["Polygon3"]['geometry'].to_crs(epsg=4326)
|
34 |
|
35 |
-
#Polygon1['geometry'] = Polygon1['geometry'].to_crs(epsg=4326)
|
36 |
-
#Polygon2=load_polygon(path+'Flooding/n_inondable_01_01for_s.shp')
|
37 |
-
# Polygon1=load_polygon(path+'risk_zones.shp')
|
38 |
-
# Polygon1['geometry'] = Polygon1['geometry'].to_crs(epsg=4326)
|
39 |
-
# Polygon2=load_polygon(path+'Flooding/n_inondable_01_01for_s.shp')
|
40 |
-
# Polygon3=load_polygon(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
|
41 |
-
|
42 |
-
# # Function to plot an interactive histogram
|
43 |
-
# # fig = px.histogram(polygon_gdf['poverty'], nbins=20)
|
44 |
-
# # st.plotly_chart(fig)
|
45 |
-
# fig = px.ecdf(polygon_gdf['poverty'])
|
46 |
-
# fig.show()
|
47 |
-
# # # #28% --> 5% of squares
|
48 |
-
# # #
|
49 |
-
# # #
|
50 |
-
# fig = px.ecdf(polygon_gdf['densite'])
|
51 |
-
# # #9000 --> 5% of squares
|
52 |
-
# fig.show()
|
53 |
-
# #
|
54 |
-
# #
|
55 |
-
# #
|
56 |
-
# # #Load geographical layers
|
57 |
-
#
|
58 |
-
|
59 |
-
# zus=gpd.read_file(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
|
60 |
-
# polygon_gdf = gpd.read_file(path+'Geo_metropole/Filosofi2017_carreaux_nivNaturel_met.shp')
|
61 |
-
# polygon_gdf2 = gpd.read_file(path+'Filosofi2017_carreaux_1km_shp/Filosofi2017_carreaux_1km_met.shp')
|
62 |
-
# polygon_gdf2['densite']=polygon_gdf2['Ind']
|
63 |
-
# polygon_gdf2['poverty']=polygon_gdf2['Men_pauv']/polygon_gdf2['Men']
|
64 |
-
# polygon_gdf['tmaille']=pd.to_numeric(polygon_gdf['tmaille'])
|
65 |
-
# polygon_gdf['tmaillem2']=polygon_gdf['tmaille']**2
|
66 |
-
# polygon_gdf['densite']=1000000*polygon_gdf['Ind']/polygon_gdf['tmaillem2']
|
67 |
-
# polygon_gdf['poverty']=polygon_gdf['Men_pauv']/polygon_gdf['Men']
|
68 |
-
|
69 |
-
|
70 |
-
# risk_zones2=polygon_gdf2[polygon_gdf2.poverty>=0.30]
|
71 |
-
# risk_zones2=risk_zones2[risk_zones2.densite>=7000]
|
72 |
-
#risk_zones2.to_file(filename=path+'risk_zones2.shp', driver='ESRI Shapefile')
|
73 |
-
|
74 |
-
# risk_zones=gpd.read_file(filename=path+'risk_zones.shp')
|
75 |
-
# flooding = gpd.read_file(path+'Flooding/n_inondable_01_01for_s.shp')
|
76 |
-
#
|
77 |
-
# #
|
78 |
-
# #
|
79 |
-
# # #FLooding zones
|
80 |
-
#risk_zones=polygon_gdf[polygon_gdf.poverty>=0.28]
|
81 |
-
# risk_zones=risk_zones[risk_zones.densite>=7000]
|
82 |
-
#
|
83 |
-
# risk_zones.to_file(filename=path+'risk_zones.shp', driver='ESRI Shapefile')
|
84 |
-
#
|
85 |
-
# # #
|
86 |
-
# m =folium.Map(location = [48.885805,2.366191], zoom_start = 6)
|
87 |
-
# folium.GeoJson(Polygon2[Polygon2.index<1000],color='blue').add_to(m)
|
88 |
-
#folium.CircleMarker([48.885805, 2.366191],radius=1,color='red').add_to(m)
|
89 |
-
# folium.GeoJson(flooding[flo,color='yellow').add_to(m)
|
90 |
-
# #folium.GeoJson(risk_zones2,color='orange').add_to(m)
|
91 |
-
# folium.GeoJson(zus).add_to(m)
|
92 |
-
# #
|
93 |
-
# #
|
94 |
-
# # # m.save(path+"map2.html")
|
95 |
-
# # # webbrowser.open_new_tab(path+"map2.html")
|
96 |
-
# # #
|
97 |
-
# # #
|
98 |
-
# policies = pd.read_pickle(path+"DB_immoplus.pkl")
|
99 |
-
# geometry = [Point(xy) for xy in zip(policies['longitude'], policies['latitude'])]
|
100 |
-
# policies_geo = gpd.GeoDataFrame(policies, geometry=geometry,crs="EPSG:4326")
|
101 |
-
# #
|
102 |
-
# large_claims=policies_geo[policies_geo.Charge>20000]
|
103 |
-
# large_claims=large_claims.dropna(subset=['latitude'])
|
104 |
-
# # #
|
105 |
-
# for arr in large_claims["geometry"]:
|
106 |
-
# lat=arr.y
|
107 |
-
# lon=arr.x
|
108 |
-
# folium.CircleMarker([lat, lon],radius=1,color='red').add_to(m)
|
109 |
-
# m.save(path+"map2.html")
|
110 |
-
# webbrowser.open_new_tab(path+"map2.html")
|
111 |
-
#
|
112 |
-
#
|
113 |
-
# sum(risk_zones['tmaille'])/sum(polygon_gdf['tmaille'])*100
|
114 |
-
# sum(risk_zones['Ind'])/sum(polygon_gdf['Ind'])*100
|
115 |
-
|
116 |
-
# #
|
117 |
-
# #
|
118 |
-
# #
|
119 |
-
# # flooding["zone_inond_freq"]=1
|
120 |
-
# # zus['flag_ZUS']=1
|
121 |
-
# # Function to get address suggestions from the Autocomplete API
|
122 |
def create_geodataframe(longitude, latitude):
|
123 |
geometry = [Point(longitude, latitude)]
|
124 |
gdf = gpd.GeoDataFrame(geometry=geometry, crs="EPSG:4326")
|
|
|
13 |
|
14 |
def load_polygon(filepath):
|
15 |
return gpd.read_file(filepath)
|
16 |
+
path=''
|
17 |
# Polygon1 = load_polygon(path + 'risk_zones.shp')
|
18 |
# Polygon2 = load_polygon(path + 'Flooding/n_inondable_01_01for_s.shp')
|
19 |
# Polygon3 = load_polygon(path + 'ZUS/ZUS_FRM_BDA09_L93.shp')
|
|
|
32 |
st.session_state.polygons["Polygon2"]['geometry'] = st.session_state.polygons["Polygon2"]['geometry'].to_crs(epsg=4326)
|
33 |
st.session_state.polygons["Polygon3"]['geometry'] = st.session_state.polygons["Polygon3"]['geometry'].to_crs(epsg=4326)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def create_geodataframe(longitude, latitude):
|
36 |
geometry = [Point(longitude, latitude)]
|
37 |
gdf = gpd.GeoDataFrame(geometry=geometry, crs="EPSG:4326")
|