Juansecal commited on
Commit
96ffd58
·
1 Parent(s): 3d309a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -88
app.py CHANGED
@@ -13,7 +13,7 @@ from streamlit_folium import st_folium
13
 
14
  def load_polygon(filepath):
15
  return gpd.read_file(filepath)
16
- path='Z:/Shared/Axeria Shared/Pricing/Immopolis Pricing Review/DATA/'
17
  # Polygon1 = load_polygon(path + 'risk_zones.shp')
18
  # Polygon2 = load_polygon(path + 'Flooding/n_inondable_01_01for_s.shp')
19
  # Polygon3 = load_polygon(path + 'ZUS/ZUS_FRM_BDA09_L93.shp')
@@ -32,93 +32,6 @@ if 'polygons' in st.session_state:
32
  st.session_state.polygons["Polygon2"]['geometry'] = st.session_state.polygons["Polygon2"]['geometry'].to_crs(epsg=4326)
33
  st.session_state.polygons["Polygon3"]['geometry'] = st.session_state.polygons["Polygon3"]['geometry'].to_crs(epsg=4326)
34
 
35
- #Polygon1['geometry'] = Polygon1['geometry'].to_crs(epsg=4326)
36
- #Polygon2=load_polygon(path+'Flooding/n_inondable_01_01for_s.shp')
37
- # Polygon1=load_polygon(path+'risk_zones.shp')
38
- # Polygon1['geometry'] = Polygon1['geometry'].to_crs(epsg=4326)
39
- # Polygon2=load_polygon(path+'Flooding/n_inondable_01_01for_s.shp')
40
- # Polygon3=load_polygon(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
41
-
42
- # # Function to plot an interactive histogram
43
- # # fig = px.histogram(polygon_gdf['poverty'], nbins=20)
44
- # # st.plotly_chart(fig)
45
- # fig = px.ecdf(polygon_gdf['poverty'])
46
- # fig.show()
47
- # # # #28% --> 5% of squares
48
- # # #
49
- # # #
50
- # fig = px.ecdf(polygon_gdf['densite'])
51
- # # #9000 --> 5% of squares
52
- # fig.show()
53
- # #
54
- # #
55
- # #
56
- # # #Load geographical layers
57
- #
58
-
59
- # zus=gpd.read_file(path+'ZUS/ZUS_FRM_BDA09_L93.shp')
60
- # polygon_gdf = gpd.read_file(path+'Geo_metropole/Filosofi2017_carreaux_nivNaturel_met.shp')
61
- # polygon_gdf2 = gpd.read_file(path+'Filosofi2017_carreaux_1km_shp/Filosofi2017_carreaux_1km_met.shp')
62
- # polygon_gdf2['densite']=polygon_gdf2['Ind']
63
- # polygon_gdf2['poverty']=polygon_gdf2['Men_pauv']/polygon_gdf2['Men']
64
- # polygon_gdf['tmaille']=pd.to_numeric(polygon_gdf['tmaille'])
65
- # polygon_gdf['tmaillem2']=polygon_gdf['tmaille']**2
66
- # polygon_gdf['densite']=1000000*polygon_gdf['Ind']/polygon_gdf['tmaillem2']
67
- # polygon_gdf['poverty']=polygon_gdf['Men_pauv']/polygon_gdf['Men']
68
-
69
-
70
- # risk_zones2=polygon_gdf2[polygon_gdf2.poverty>=0.30]
71
- # risk_zones2=risk_zones2[risk_zones2.densite>=7000]
72
- #risk_zones2.to_file(filename=path+'risk_zones2.shp', driver='ESRI Shapefile')
73
-
74
- # risk_zones=gpd.read_file(filename=path+'risk_zones.shp')
75
- # flooding = gpd.read_file(path+'Flooding/n_inondable_01_01for_s.shp')
76
- #
77
- # #
78
- # #
79
- # # #FLooding zones
80
- #risk_zones=polygon_gdf[polygon_gdf.poverty>=0.28]
81
- # risk_zones=risk_zones[risk_zones.densite>=7000]
82
- #
83
- # risk_zones.to_file(filename=path+'risk_zones.shp', driver='ESRI Shapefile')
84
- #
85
- # # #
86
- # m =folium.Map(location = [48.885805,2.366191], zoom_start = 6)
87
- # folium.GeoJson(Polygon2[Polygon2.index<1000],color='blue').add_to(m)
88
- #folium.CircleMarker([48.885805, 2.366191],radius=1,color='red').add_to(m)
89
- # folium.GeoJson(flooding[flo,color='yellow').add_to(m)
90
- # #folium.GeoJson(risk_zones2,color='orange').add_to(m)
91
- # folium.GeoJson(zus).add_to(m)
92
- # #
93
- # #
94
- # # # m.save(path+"map2.html")
95
- # # # webbrowser.open_new_tab(path+"map2.html")
96
- # # #
97
- # # #
98
- # policies = pd.read_pickle(path+"DB_immoplus.pkl")
99
- # geometry = [Point(xy) for xy in zip(policies['longitude'], policies['latitude'])]
100
- # policies_geo = gpd.GeoDataFrame(policies, geometry=geometry,crs="EPSG:4326")
101
- # #
102
- # large_claims=policies_geo[policies_geo.Charge>20000]
103
- # large_claims=large_claims.dropna(subset=['latitude'])
104
- # # #
105
- # for arr in large_claims["geometry"]:
106
- # lat=arr.y
107
- # lon=arr.x
108
- # folium.CircleMarker([lat, lon],radius=1,color='red').add_to(m)
109
- # m.save(path+"map2.html")
110
- # webbrowser.open_new_tab(path+"map2.html")
111
- #
112
- #
113
- # sum(risk_zones['tmaille'])/sum(polygon_gdf['tmaille'])*100
114
- # sum(risk_zones['Ind'])/sum(polygon_gdf['Ind'])*100
115
-
116
- # #
117
- # #
118
- # #
119
- # # flooding["zone_inond_freq"]=1
120
- # # zus['flag_ZUS']=1
121
- # # Function to get address suggestions from the Autocomplete API
122
  def create_geodataframe(longitude, latitude):
123
  geometry = [Point(longitude, latitude)]
124
  gdf = gpd.GeoDataFrame(geometry=geometry, crs="EPSG:4326")
 
13
 
14
  def load_polygon(filepath):
15
  return gpd.read_file(filepath)
16
+ path=''
17
  # Polygon1 = load_polygon(path + 'risk_zones.shp')
18
  # Polygon2 = load_polygon(path + 'Flooding/n_inondable_01_01for_s.shp')
19
  # Polygon3 = load_polygon(path + 'ZUS/ZUS_FRM_BDA09_L93.shp')
 
32
  st.session_state.polygons["Polygon2"]['geometry'] = st.session_state.polygons["Polygon2"]['geometry'].to_crs(epsg=4326)
33
  st.session_state.polygons["Polygon3"]['geometry'] = st.session_state.polygons["Polygon3"]['geometry'].to_crs(epsg=4326)
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  def create_geodataframe(longitude, latitude):
36
  geometry = [Point(longitude, latitude)]
37
  gdf = gpd.GeoDataFrame(geometry=geometry, crs="EPSG:4326")