Spaces:
Build error
Build error
File size: 21,016 Bytes
1865436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
# import sys
# sys.path.insert(0, '../Pipeline_POI_Engineering/src/sts')
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import glob
import multiprocessing as mp
import os
import time
import cv2
import tqdm
import torch
import numpy as np
import json
from shapely.geometry import Point, Polygon
from genericmask import GenericMask
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes
from predictor import VisualizationDemo
# from beamsearch import beam_search
from editdistance import eval
import operator
# constants
WINDOW_NAME = "COCO detections"
dictionary = "aàáạảãâầấậẩẫăằắặẳẵAÀÁẠẢÃĂẰẮẶẲẴÂẦẤẬẨẪeèéẹẻẽêềếệểễEÈÉẸẺẼÊỀẾỆỂỄoòóọỏõôồốộổỗơờớợởỡOÒÓỌỎÕÔỒỐỘỔỖƠỜỚỢỞỠiìíịỉĩIÌÍỊỈĨuùúụủũưừứựửữƯỪỨỰỬỮUÙÚỤỦŨyỳýỵỷỹYỲÝỴỶỸ"
def make_groups():
groups = []
i = 0
while i < len(dictionary) - 5:
group = [c for c in dictionary[i: i + 6]]
i += 6
groups.append(group)
return groups
groups = make_groups()
TONES = ["", "ˋ", "ˊ", "﹒", "ˀ", "˜"]
SOURCES = ["ă", "â", "Ă", "Â", "ê", "Ê",
"ô", "ơ", "Ô", "Ơ", "ư", "Ư", "Đ", "đ"]
TARGETS = ["aˇ", "aˆ", "Aˇ", "Aˆ", "eˆ", "Eˆ",
"oˆ", "o˒", "Oˆ", "O˒", "u˒", "U˒", "D‑", "d‑"]
def parse_tone(word):
res = ""
tone = ""
for char in word:
if char in dictionary:
for group in groups:
if char in group:
if tone == "":
tone = TONES[group.index(char)]
res += group[0]
else:
res += char
res += tone
return res
def full_parse(word):
word = parse_tone(word)
res = ""
for char in word:
if char in SOURCES:
res += TARGETS[SOURCES.index(char)]
else:
res += char
return res
def correct_tone_position(word):
word = word[:-1]
if len(word) < 2:
pass
first_ord_char = ""
second_order_char = ""
for char in word:
for group in groups:
if char in group:
second_order_char = first_ord_char
first_ord_char = group[0]
if word[-1] == first_ord_char and second_order_char != "":
pair_chars = ["qu", "Qu", "qU", "QU", "gi", "Gi", "gI", "GI"]
for pair in pair_chars:
if pair in word and second_order_char in ["u", "U", "i", "I"]:
return first_ord_char
return second_order_char
return first_ord_char
def decoder(recognition):
for char in TARGETS:
recognition = recognition.replace(char, SOURCES[TARGETS.index(char)])
if len(recognition) < 1:
return recognition
if recognition[-1] in TONES:
if len(recognition) < 2:
return recognition
replace_char = correct_tone_position(recognition)
tone = recognition[-1]
recognition = recognition[:-1]
for group in groups:
if replace_char in group:
recognition = recognition.replace(
replace_char, group[TONES.index(tone)])
return recognition
def decode_recognition(rec):
CTLABELS = [" ", "!", '"', "#", "$", "%", "&", "'", "(", ")", "*", "+", ",", "-", ".", "/", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ":", ";", "<", "=", ">", "?", "@", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R",
"S", "T", "U", "V", "W", "X", "Y", "Z", "[", "\\", "]", "^", "_", "`", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "{", "|", "}", "~", "ˋ", "ˊ", "﹒", "ˀ", "˜", "ˇ", "ˆ", "˒", "‑", ]
last_char = False
s = ''
for c in rec:
c = int(c)
if 0 < c < 107:
s += CTLABELS[c-1]
last_char = c
elif c == 0:
s += u''
else:
last_char = False
if len(s) == 0:
s = ' '
s = decoder(s)
return s
def get_mini_boxes(contour, max_x, min_x, thr):
bounding_box = cv2.minAreaRect(contour)
# print('bbox', bounding_box)
bounding_box = list(bounding_box)
bounding_box[1] = list(bounding_box[1])
if bounding_box[2] <= 45:
bounding_box[1][0] = bounding_box[1][0]*thr
else:
bounding_box[1][1] = bounding_box[1][1]*thr
bounding_box[1] = tuple(bounding_box[1])
bounding_box = tuple(bounding_box)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
# p1 = np.array([min_x, points[index_1][1]])
# p2 = np.array([max_x, points[index_2][1]])
# p3 = np.array([max_x, points[index_3][1]])
# p4 = np.array([min_x, points[index_4][1]])
# box = [p1, p2, p3, p4]
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box
def get_mini_boxes_1(contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box
def calculate_iou(box_1, box_2):
# print(box_1, box_2)
poly_1 = Polygon(box_1)
poly_2 = Polygon(box_2)
# print(poly_1.union(poly_2).area)
try:
iou = poly_1.intersection(poly_2).area / poly_1.union(poly_2).area
except:
iou = 0
return iou
# def get_key(val, my_dict):
# for key, value in my_dict.items():
# if val in value:
# return key
def merge_boxes(boxes, recs, trh):
dict_bbox = {}
x = 0
for i in range(len(boxes)-2):
tmp_box = [i]
db_copy1 = dict_bbox.copy()
for key, value in db_copy1.items():
if i in value:
tmp_box = db_copy1[key]
del dict_bbox[key]
break
for j in range(i+1, len(boxes)-1):
ba = cv2.minAreaRect(boxes[i].reshape(-1, 1, 2).astype(int))
bb = cv2.minAreaRect(boxes[j].reshape(-1, 1, 2).astype(int))
iou = calculate_iou(boxes[i], boxes[j])
# scr = min(ba[1][0], bb[1][0])/max(ba[1][0], bb[1][0])
if iou > trh:
db_copy = dict_bbox.copy()
check = False
for key, value in db_copy.items():
if i in value:
check = True
tmp_box.remove(i)
tmp_box.extend(db_copy[key])
del dict_bbox[key]
break
if check == False:
tmp_box.append(j)
dict_bbox[x] = tmp_box
x += 1
recs_out = []
db_clone = {}
for key, value in dict_bbox.items():
db_clone[key] = list(set(value))
for key, value in db_clone.items():
tmp_str = []
for i in value:
tmp_str.append([recs[i], cv2.minAreaRect(
boxes[i].reshape(-1, 1, 2).astype(int))[0][0]])
recs_out.append(tmp_str)
return db_clone, recs_out
def combine(dict_box, h, w, boxes):
bboxs = []
for key, db in dict_box.items():
list_box = []
for j in db:
list_box.append(boxes[j])
h1 = h
h2 = 0
h3 = 0
h4 = h
w1 = w
w2 = w
w3 = 0
w4 = 0
for box in list_box:
if box[0, 0] < h1:
h1 = box[0, 0]
if box[1, 0] > h2:
h2 = box[1, 0]
if box[2, 0] > h3:
h3 = box[2, 0]
if box[3, 0] < h4:
h4 = box[3, 0]
if box[0, 1] < w1:
w1 = box[0, 1]
if box[1, 1] < w2:
w2 = box[1, 1]
if box[2, 1] > w3:
w3 = box[2, 1]
if box[3, 1] > w4:
w4 = box[3, 1]
tmp = np.array([[h1, w1], [h2, w2], [h3, w3], [h4, w4]])
bboxs.append(tmp.astype(np.int16))
return bboxs
def rec_to_str(recs):
rec_1 = []
for rec in recs:
i = sorted(rec, key=lambda x: x[1])
print(i)
i = " ".join(decoder(item[0]) for item in i)
rec_1.append(i)
return rec_1
def scale_points(mask):
mask_tmp = mask.copy()
for i in range(2, len(mask_tmp)-2):
for j in range(2, len(mask_tmp[i])-2):
if mask_tmp[i][j] != 0:
mask[i-2][j-2] = mask[i-2][j-1] = mask[i-2][j] = mask[i-2][j+1] = mask[i-2][j+2] = mask[i-1][j-2] = mask[i-1][j-1] = mask[i-1][j] = mask[i-1][j+1] = mask[i-1][j+2] = mask[i][j-2] = mask[i][j-1] = mask[i][j +
1] = mask[i][j+2] = mask[i+1][j-2] = mask[i+1][j-1] = mask[i+1][j] = mask[i+1][j+1] = mask[i+1][j+2] = mask[i+2][j-2] = mask[i+2][j-1] = mask[i+2][j] = mask[i+2][j+1] = mask[i+2][j+2] = mask_tmp[i][j]
return mask
def convert_boxes(boxes):
if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
return boxes.tensor.numpy()
else:
return np.asarray(boxes)
def convert_masks(masks_or_polygons, h, w):
m = masks_or_polygons
if isinstance(m, PolygonMasks):
m = m.polygons
if isinstance(m, BitMasks):
m = m.tensor.numpy()
if isinstance(m, torch.Tensor):
m = m.numpy()
ret = []
for x in m:
if isinstance(x, GenericMask):
ret.append(x)
else:
ret.append(GenericMask(x, h, w))
return ret
def setup_cfg(args):
# load config from file and command-line arguments
cfg = get_cfg()
from projects.SWINTS.swints import add_SWINTS_config
add_SWINTS_config(cfg)
# -----
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# Set score_threshold for builtin models
cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold
cfg.freeze()
return cfg
def get_parser():
parser = argparse.ArgumentParser(
description="Detectron2 demo for builtin configs")
parser.add_argument(
"--config-file",
default="src/sts/projects/SWINTS/configs/SWINTS-swin-finetune-vintext.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--inputfile", nargs="+",
help="A list of array of segmentation", default=["output/ss"])
parser.add_argument(
"--input",
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'", default=["images"]
)
parser.add_argument(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.", default="output/sts/"
)
parser.add_argument(
"--output-visualize",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.", default="output/visualize/"
)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.5,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
return parser
if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
args = get_parser().parse_args()
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
demo = VisualizationDemo(cfg)
hh = []
if args.inputfile:
path_segment = args.inputfile[0]
if args.input:
if os.path.isdir(args.input[0]):
args.input = [os.path.join(args.input[0], fname)
for fname in os.listdir(args.input[0])]
elif len(args.input) == 1:
args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found"
for path in tqdm.tqdm(args.input, disable=not args.output):
# use PIL, to be consistent with evaluation
print(path)
txt_name = str(path.split("/")[-1].split(".")[0]) + '.txt'
txt_file = os.path.join(path_segment, txt_name)
img = read_image(path, format="BGR")
h, w, _ = img.shape
start_time = time.time()
predictions, visualized_output = demo.run_on_image(
img, args.confidence_threshold, path)
# time_1 = time.time()-start_time
mask = np.loadtxt(txt_file, dtype=np.int32)
# time_2 = time.time()-time_1
mmax = np.amax(mask)
if mmax == 0:
mmax = 1
mask = scale_points(mask)
# time_3 = time.time()-time_2
outs = cv2.findContours(
(mask * int(255/mmax)).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]
box_sign = []
for contour in contours:
points = get_mini_boxes_1(contour)
points = np.array(points)
box_sign.append(points)
# time_4 = time.time()-time_3
dict_box_sign = {}
dict_box_sign_out = {}
dict_rec_sign = {}
dict_rec_sign_out = {}
in_signboard = 0
# full_box = 0
for i in range(len(box_sign)):
dict_box_sign[i] = []
dict_box_sign_out[i] = []
dict_rec_sign[i] = []
dict_rec_sign_out[i] = []
list_limit = []
for sig in box_sign:
# print(sig)
max_x = max(sig[0][0], sig[1][0], sig[2][0], sig[3][0])
min_x = min(sig[0][0], sig[1][0], sig[2][0], sig[3][0])
list_limit.append([max_x, min_x])
if "instances" in predictions:
beziers = []
segments = []
recc = []
scoress = []
instances = predictions["instances"].to(torch.device("cpu"))
# print("instance",type(instances))
instances = instances[instances.scores >
args.confidence_threshold]
boxes = instances.pred_boxes if instances.has(
"pred_boxes") else None
scores = instances.scores if instances.has("scores") else None
# classes = instances.pred_classes if instances.has("pred_classes") else None
recs = instances.pred_rec if instances.has(
"pred_rec") else None
# rec_score = instances.pred_rec_score if instances.has("pred_rec_score") else None
masks = np.asarray(instances.pred_masks)
masks = [GenericMask(x, h, w) for x in masks]
masks = convert_masks(masks, h, w)
polys = []
for mask in masks:
polys.append(np.concatenate(
mask.polygons).reshape(-1, 2).tolist())
# text box into signboard box
for bezier, rec, score in zip(polys, recs, scores):
# print(bezier)
if score >= 0.5:
bezier = np.array(
bezier, dtype='int').reshape(-1, 1, 2)
bounding_box = cv2.minAreaRect(bezier)
midpoint = Point(bounding_box[0])
for i in range(len(box_sign)):
poly = Polygon(box_sign[i])
if midpoint.within(poly):
in_signboard += 1
dict_box_sign[i].append(bezier)
dict_rec_sign[i].append(
full_parse(decode_recognition(rec)))
# time_5 = time.time()-time_4
for i in range(len(dict_box_sign)):
boxes = []
reces = []
for bezier, rec in zip(dict_box_sign[i], dict_rec_sign[i]):
unclip_ratio = 1.0
bezier = bezier.reshape(-1, 1, 2)
points = get_mini_boxes(
bezier, list_limit[i][0], list_limit[i][1], 3)
box = np.array(points, dtype=np.int16)
box[:, 0] = np.clip(np.round(box[:, 0]), 0, w)
box[:, 1] = np.clip(np.round(box[:, 1]), 0, h)
boxes.append(box.astype(np.int16))
reces.append(rec)
dict_box, rec_out = merge_boxes(boxes, reces, 0.1)
rec_outs = rec_to_str(rec_out)
bboxs = combine(dict_box, h, w, boxes)
# print(rec_outs)
dict_box_sign_out[i] = bboxs
dict_rec_sign_out[i] = rec_outs
# time_6 = time.time()-time_5
# Visualize image after merge boxes
img_draw = cv2.imread(path)
for i in range(len(dict_box_sign_out)):
for j in range(len(dict_box_sign_out[i])):
pts = dict_box_sign_out[i][j]
x, y = pts[0][0], pts[0][1]
pts = np.array(pts, np.int32).reshape((-1, 1, 2))
isClosed = True
color = (255, 0, 0)
thickness = 2
img_draw = cv2.polylines(
img_draw, [pts], isClosed, color, thickness)
cv2.putText(img_draw, dict_rec_sign_out[i][j], (
x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
# print(time_1, time_2, time_3, time_4, time_5, time_6)
txt_name1 = str(path.split("/")[-1].split(".")[0]) + '_box.txt'
txt_name2 = str(path.split("/")[-1].split(".")[0]) + '_text.txt'
img_name = str(path.split("/")[-1].split(".")[0]) + '.jpg'
if args.output:
output_path_box = os.path.join(args.output, txt_name1)
output_path_text = os.path.join(args.output, txt_name2)
with open(output_path_box, 'w+', encoding='utf-8') as output_file_box:
for index, box in dict_box_sign_out.items():
arr = []
for box_ in box:
arr.append(box_.tolist())
dict_box_sign_out[index] = arr
dict_box_sign_out["file_name"] = str(path.split("/")[-1])
json.dump(dict_box_sign_out, output_file_box,
ensure_ascii=False)
with open(output_path_text, 'w+', encoding='utf-8') as output_file_box:
dict_rec_sign_out["file_name"] = str(path.split("/")[-1])
json.dump(dict_rec_sign_out, output_file_box,
ensure_ascii=False)
if args.output_visualize:
cv2.imwrite(os.path.join(
args.output_visualize, img_name), img_draw)
logger.info(
"{}: detected {} instances in {:.2f}s".format(
path, len(predictions["instances"]
), time.time() - start_time
)
)
|