Spaces:
Build error
Build error
File size: 28,678 Bytes
1865436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
import contextlib
import copy
import io
import itertools
import json
import logging
import numpy as np
import os
import re
import torch
from collections import OrderedDict
from fvcore.common.file_io import PathManager
from pycocotools.coco import COCO
from detectron2.utils import comm
from detectron2.data import MetadataCatalog
from detectron2.evaluation.evaluator import DatasetEvaluator
import glob
import shutil
from shapely.geometry import Polygon, LinearRing
from detectron2.evaluation import text_eval_script
from detectron2.evaluation import text_eval_script_ic15
import zipfile
import pickle
import cv2
import editdistance
class TextEvaluator(DatasetEvaluator):
"""
Evaluate text proposals and recognition.
"""
def __init__(self, dataset_name, cfg, distributed, output_dir=None):
self._tasks = ("polygon", "recognition")
self._distributed = distributed
self._output_dir = output_dir
self._cpu_device = torch.device("cpu")
self._logger = logging.getLogger(__name__)
self._metadata = MetadataCatalog.get(dataset_name)
if not hasattr(self._metadata, "json_file"):
raise AttributeError(
f"json_file was not found in MetaDataCatalog for '{dataset_name}'."
)
CTLABELS = [" ","!",'"',"#","$","%","&","'","(",")","*","+",",","-",".","/","0","1","2","3","4","5","6","7","8","9",":",";","<","=",">","?","@","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z","[","\\","]","^","_","`","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z","{","|","}","~","ˋ","ˊ","﹒","ˀ","˜","ˇ","ˆ","˒","‑",'´', "~"]
json_file = PathManager.get_local_path(self._metadata.json_file)
with contextlib.redirect_stdout(io.StringIO()):
self._coco_api = COCO(json_file)
self.dataset_name = dataset_name
# use dataset_name to decide eval_gt_path
self.lexicon_type = 3
if "totaltext" in dataset_name:
self._text_eval_gt_path = "datasets/evaluation/gt_totaltext.zip"
self._word_spotting = True
self.dataset_name = "totaltext"
elif "ctw1500" in dataset_name:
self._text_eval_gt_path = "datasets/evaluation/gt_ctw1500.zip"
self._word_spotting = False
self.dataset_name = "ctw1500"
elif "icdar2015" in dataset_name:
self._text_eval_gt_path = "datasets/evaluation/gt_icdar2015.zip"
self._word_spotting = False
self.dataset_name = "icdar2015"
elif "vintext" in dataset_name:
self.lexicon_type = None
self._text_eval_gt_path = "datasets/evaluation/gt_fimotext.zip"
self._word_spotting = True
elif "custom" in dataset_name:
self._text_eval_gt_path = "datasets/evaluation/gt_custom.zip"
self._word_spotting = False
self._text_eval_confidence = cfg.TEST.INFERENCE_TH_TEST
self.nms_enable = cfg.TEST.USE_NMS_IN_TSET
def reset(self):
self._predictions = []
def process(self, inputs, outputs):
for input, output in zip(inputs, outputs):
prediction = {"image_id": input["image_id"]}
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = self.instances_to_coco_json(instances, input)
self._predictions.append(prediction)
def to_eval_format(self, file_path, temp_dir="temp_det_results", cf_th=0.5):
def fis_ascii(s):
a = (ord(c) < 128 for c in s)
return all(a)
def de_ascii(s):
a = [c for c in s if ord(c) < 128]
outa = ''
for i in a:
outa +=i
return outa
with open(file_path, 'r') as f:
data = json.load(f)
with open('temp_all_det_cors.txt', 'w') as f2:
for ix in range(len(data)):
if data[ix]['score'] > 0.1:
outstr = '{}: '.format(data[ix]['image_id'])
xmin = 1000000
ymin = 1000000
xmax = 0
ymax = 0
for i in range(len(data[ix]['polys'])):
outstr = outstr + str(int(data[ix]['polys'][i][0])) +','+str(int(data[ix]['polys'][i][1])) +','
if not "vintext" in self.dataset_name:
ass = de_ascii(data[ix]['rec'])
else:
ass = data[ix]['rec']
if len(ass)>=0: #
outstr = outstr + str(round(data[ix]['score'], 3)) +',####'+ass+'\n'
f2.writelines(outstr)
f2.close()
dirn = temp_dir
lsc = [cf_th]
fres = open('temp_all_det_cors.txt', 'r').readlines()
for isc in lsc:
if not os.path.isdir(dirn):
os.mkdir(dirn)
for line in fres:
line = line.strip()
s = line.split(': ')
filename = '{:07d}.txt'.format(int(s[0]))
outName = os.path.join(dirn, filename)
with open(outName, 'a') as fout:
ptr = s[1].strip().split(',####')
score = ptr[0].split(',')[-1]
if float(score) < isc:
continue
cors = ','.join(e for e in ptr[0].split(',')[:-1])
fout.writelines(cors+',####'+ptr[1]+'\n')
os.remove("temp_all_det_cors.txt")
def sort_detection(self, temp_dir):
origin_file = temp_dir
output_file = "final_"+temp_dir
output_file_full = "full_final_"+temp_dir
if not os.path.isdir(output_file_full):
os.mkdir(output_file_full)
if not os.path.isdir(output_file):
os.mkdir(output_file)
files = glob.glob(origin_file+'*.txt')
files.sort()
if "totaltext" in self.dataset_name:
if not self.lexicon_type == None:
lexicon_path = 'datasets/totaltext/weak_voc_new.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/totaltext/weak_voc_pair_list.txt', 'r')
pairs = dict()
for line in pair_list.readlines():
line=line.strip()
word = line.split(' ')[0].upper()
word_gt = line[len(word)+1:]
pairs[word] = word_gt
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
elif "ctw1500" in self.dataset_name:
if not self.lexicon_type == None:
lexicon_path = 'datasets/CTW1500/weak_voc_new.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/CTW1500/weak_voc_pair_list.txt', 'r')
pairs = dict()
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
pairs[line.upper()] = line
elif "icdar2015" in self.dataset_name:
if self.lexicon_type==1:
# generic lexicon
lexicon_path = 'datasets/icdar2015/GenericVocabulary_new.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/icdar2015/GenericVocabulary_pair_list.txt', 'r')
pairs = dict()
for line in pair_list.readlines():
line=line.strip()
word = line.split(' ')[0].upper()
word_gt = line[len(word)+1:]
pairs[word] = word_gt
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
if self.lexicon_type==2:
# weak lexicon
lexicon_path = 'datasets/icdar2015/ch4_test_vocabulary_new.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/icdar2015/ch4_test_vocabulary_pair_list.txt', 'r')
pairs = dict()
for line in pair_list.readlines():
line=line.strip()
word = line.split(' ')[0].upper()
word_gt = line[len(word)+1:]
pairs[word] = word_gt
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
def find_match_word(rec_str, pairs, lexicon=None):
rec_str = rec_str.upper()
dist_min = 100
dist_min_pre = 100
match_word = ''
match_dist = 100
for word in lexicon:
word = word.upper()
ed = editdistance.eval(rec_str, word)
length_dist = abs(len(word) - len(rec_str))
dist = ed
if dist<dist_min:
dist_min = dist
match_word = pairs[word]
match_dist = dist
return match_word, match_dist
for i in files:
if "icdar2015" in self.dataset_name:
out = output_file + 'res_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
out_full = output_file_full + 'res_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
if self.lexicon_type==3:
lexicon_path = 'datasets/icdar2015/new_strong_lexicon/new_voc_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/icdar2015/new_strong_lexicon/pair_voc_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt')
pairs = dict()
for line in pair_list.readlines():
line=line.strip()
word = line.split(' ')[0].upper()
word_gt = line[len(word)+1:]
pairs[word] = word_gt
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
else:
out = i.replace(origin_file, output_file)
out_full = i.replace(origin_file, output_file_full)
fin = open(i, 'r').readlines()
fout = open(out, 'w')
fout_full = open(out_full, 'w')
for iline, line in enumerate(fin):
ptr = line.strip().split(',####')
rec = ptr[1]
cors = ptr[0].split(',')
assert(len(cors) %2 == 0), 'cors invalid.'
pts = [(int(cors[j]), int(cors[j+1])) for j in range(0,len(cors),2)]
try:
pgt = Polygon(pts)
except Exception as e:
print(e)
print('An invalid detection in {} line {} is removed ... '.format(i, iline))
continue
if not pgt.is_valid:
print('An invalid detection in {} line {} is removed ... '.format(i, iline))
continue
pRing = LinearRing(pts)
if not "icdar2015" in self.dataset_name:
if pRing.is_ccw:
pts.reverse()
outstr = ''
for ipt in pts[:-1]:
outstr += (str(int(ipt[0]))+','+ str(int(ipt[1]))+',')
outstr += (str(int(pts[-1][0]))+','+ str(int(pts[-1][1])))
pts = outstr
if "icdar2015" in self.dataset_name:
outstr = outstr + ',' + rec
else:
outstr = outstr + ',####' + rec
fout.writelines(outstr+'\n')
if self.lexicon_type is None:
rec_full = rec
else:
match_word, match_dist = find_match_word(rec,pairs,lexicon)
if match_dist<1.5:
rec_full = match_word
if "icdar2015" in self.dataset_name:
pts = pts + ',' + rec_full
else:
pts = pts + ',####' + rec_full
fout_full.writelines(pts+'\n')
fout.close()
fout_full.close()
def zipdir(path, ziph):
# ziph is zipfile handle
for root, dirs, files in os.walk(path):
for file in files:
ziph.write(os.path.join(root, file))
if "icdar2015" in self.dataset_name:
os.system('zip -r -q -j '+'det.zip'+' '+output_file+'/*')
os.system('zip -r -q -j '+'det_full.zip'+' '+output_file_full+'/*')
shutil.rmtree(origin_file)
shutil.rmtree(output_file)
shutil.rmtree(output_file_full)
return "det.zip", "det_full.zip"
else:
os.chdir(output_file)
zipf = zipfile.ZipFile('../det.zip', 'w', zipfile.ZIP_DEFLATED)
zipdir('./', zipf)
zipf.close()
os.chdir("../")
os.chdir(output_file_full)
zipf_full = zipfile.ZipFile('../det_full.zip', 'w', zipfile.ZIP_DEFLATED)
zipdir('./', zipf_full)
zipf_full.close()
os.chdir("../")
# clean temp files
shutil.rmtree(origin_file)
shutil.rmtree(output_file)
shutil.rmtree(output_file_full)
return "det.zip", "det_full.zip"
def evaluate_with_official_code(self, result_path, gt_path):
if "icdar2015" in self.dataset_name:
return text_eval_script_ic15.text_eval_main_ic15(det_file=result_path, gt_file=gt_path, is_word_spotting=self._word_spotting)
else:
return text_eval_script.text_eval_main(det_file=result_path, gt_file=gt_path, is_word_spotting=self._word_spotting)
def evaluate(self):
if self._distributed:
comm.synchronize()
predictions = comm.gather(self._predictions, dst=0)
predictions = list(itertools.chain(*predictions))
if not comm.is_main_process():
return {}
else:
predictions = self._predictions
if len(predictions) == 0:
self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
return {}
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "text_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w", encoding='utf-8') as f:
f.write(str(json.dumps(coco_results, ensure_ascii = True)))
f.flush()
self._results = OrderedDict()
# eval text
if not self._text_eval_gt_path:
return copy.deepcopy(self._results)
temp_dir = "temp_det_results/"
self.to_eval_format(file_path, temp_dir, self._text_eval_confidence)
result_path, result_path_full = self.sort_detection(temp_dir)
text_result = self.evaluate_with_official_code(result_path, self._text_eval_gt_path) # None
text_result["e2e_method"] = "None-" + text_result["e2e_method"]
if not self.lexicon_type == None:
dict_lexicon = {"1": "Generic", "2": "Weak", "3": "Strong"}
text_result_full = self.evaluate_with_official_code(result_path_full, self._text_eval_gt_path) # with lexicon
text_result_full["e2e_method"] = dict_lexicon[str(self.lexicon_type)] + "-" + text_result_full["e2e_method"]
# os.remove(result_path)
# os.remove(result_path_full)
# parse
template = "(\S+): (\S+): (\S+), (\S+): (\S+), (\S+): (\S+)"
result = text_result["det_only_method"]
groups = re.match(template, result).groups()
self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}
result = text_result["e2e_method"]
groups = re.match(template, result).groups()
self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}
if not self.lexicon_type == None:
result = text_result_full["e2e_method"]
groups = re.match(template, result).groups()
self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}
return copy.deepcopy(self._results)
def instances_to_coco_json(self, instances, inputs):
img_id = inputs["image_id"]
width = inputs['width']
height = inputs['height']
num_instances = len(instances)
if num_instances == 0:
return []
scores = instances.scores.tolist()
masks = np.asarray(instances.pred_masks)
masks = [GenericMask(x, height, width) for x in masks]
recs = instances.pred_rec.numpy()
if self.nms_enable:
polys = []
for mask in masks:
if not len(mask.polygons):
continue
polys.append(np.concatenate(mask.polygons).reshape(-1,2))
keep = self.py_cpu_pnms(polys,scores,0.5)
results = []
i = 0
for mask, rec, score in zip(masks, recs, scores):
# if rec > 0.3:
if not len(mask.polygons):
continue
if self.nms_enable:
if i not in keep:
i = i+1
continue
poly = polys[i]
if 'icdar2015' in self.dataset_name:
poly = polygon2rbox(poly, height, width)
poly = np.array(poly)
rec_string = self.decode(rec)
if not len(rec_string):
i = i+1
continue
result = {
"image_id": img_id,
"category_id": 1,
"polys": poly.tolist(),
"rec": rec_string,
"score": score,
}
results.append(result)
i = i+1
return results
def decode(self, rec):
CTLABELS = [" ","!",'"',"#","$","%","&","'","(",")","*","+",",","-",".","/","0","1","2","3","4","5","6","7","8","9",":",";","<","=",">","?","@","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z","[","\\","]","^","_","`","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z","{","|","}","~","ˋ","ˊ","﹒","ˀ","˜","ˇ","ˆ","˒","‑",'´', "~"]
s = ''
tmp = []
for i in range(len(rec)-1):
if i == 0:
tmp.append(rec[i])
else:
if rec[i] != rec[i-1]:
tmp.append(rec[i])
for c in tmp:
c = int(c)
if 0<c < len(CTLABELS):
if not "ctw1500" in self.dataset_name and not "vintext" in self.dataset_name:
print('a')
if CTLABELS[c-1] in "_0123456789abcdefghijklmnopqrstuvwxyz":
s += CTLABELS[c-1]
else:
# print('b')
s += CTLABELS[c-1]
else:
s += u''
if "vintext" in self.dataset_name:
s = vintext_decoder(s)
return s
def py_cpu_pnms(self, dets, scores, thresh):
pts = dets
scores = np.array(scores)
order = scores.argsort()[::-1]
areas = np.zeros(scores.shape)
order = scores.argsort()[::-1]
inter_areas = np.zeros((scores.shape[0], scores.shape[0]))
for il in range(len(pts)):
poly = Polygon(pts[il]).buffer(0.001)
areas[il] = poly.area
for jl in range(il, len(pts)):
polyj = Polygon(pts[jl].tolist()).buffer(0.001)
inS = poly.intersection(polyj)
try:
inter_areas[il][jl] = inS.area
except:
import pdb;pdb.set_trace()
inter_areas[jl][il] = inS.area
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = inter_areas[i][order[1:]] / ((areas[i]) + areas[order[1:]] - inter_areas[i][order[1:]])
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def polygon2rbox(polygon, image_height, image_width):
poly = np.array(polygon).reshape((-1, 2)).astype(np.float32)
rect = cv2.minAreaRect(poly)
corners = cv2.boxPoints(rect)
corners = np.array(corners, dtype="int")
pts = get_tight_rect(corners, 0, 0, image_height, image_width, 1)
pts = np.array(pts).reshape(-1,2)
pts = pts.tolist()
return pts
def get_tight_rect(points, start_x, start_y, image_height, image_width, scale):
points = list(points)
ps = sorted(points, key=lambda x: x[0])
if ps[1][1] > ps[0][1]:
px1 = ps[0][0] * scale + start_x
py1 = ps[0][1] * scale + start_y
px4 = ps[1][0] * scale + start_x
py4 = ps[1][1] * scale + start_y
else:
px1 = ps[1][0] * scale + start_x
py1 = ps[1][1] * scale + start_y
px4 = ps[0][0] * scale + start_x
py4 = ps[0][1] * scale + start_y
if ps[3][1] > ps[2][1]:
px2 = ps[2][0] * scale + start_x
py2 = ps[2][1] * scale + start_y
px3 = ps[3][0] * scale + start_x
py3 = ps[3][1] * scale + start_y
else:
px2 = ps[3][0] * scale + start_x
py2 = ps[3][1] * scale + start_y
px3 = ps[2][0] * scale + start_x
py3 = ps[2][1] * scale + start_y
px1 = min(max(px1, 1), image_width - 1)
px2 = min(max(px2, 1), image_width - 1)
px3 = min(max(px3, 1), image_width - 1)
px4 = min(max(px4, 1), image_width - 1)
py1 = min(max(py1, 1), image_height - 1)
py2 = min(max(py2, 1), image_height - 1)
py3 = min(max(py3, 1), image_height - 1)
py4 = min(max(py4, 1), image_height - 1)
return [px1, py1, px2, py2, px3, py3, px4, py4]
class GenericMask:
"""
Attribute:
polygons (list[ndarray]): list[ndarray]: polygons for this mask.
Each ndarray has format [x, y, x, y, ...]
mask (ndarray): a binary mask
"""
def __init__(self, mask_or_polygons, height, width):
self._mask = self._polygons = self._has_holes = None
self.height = height
self.width = width
m = mask_or_polygons
if isinstance(m, dict):
# RLEs
assert "counts" in m and "size" in m
if isinstance(m["counts"], list): # uncompressed RLEs
h, w = m["size"]
assert h == height and w == width
m = mask_util.frPyObjects(m, h, w)
self._mask = mask_util.decode(m)[:, :]
return
if isinstance(m, list): # list[ndarray]
self._polygons = [np.asarray(x).reshape(-1) for x in m]
return
if isinstance(m, np.ndarray): # assumed to be a binary mask
assert m.shape[1] != 2, m.shape
assert m.shape == (height, width), m.shape
self._mask = m.astype("uint8")
return
raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m)))
@property
def mask(self):
if self._mask is None:
self._mask = self.polygons_to_mask(self._polygons)
return self._mask
@property
def polygons(self):
if self._polygons is None:
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
return self._polygons
@property
def has_holes(self):
if self._has_holes is None:
if self._mask is not None:
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
else:
self._has_holes = False # if original format is polygon, does not have holes
return self._has_holes
def mask_to_polygons(self, mask):
# cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
# hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
# Internal contours (holes) are placed in hierarchy-2.
# cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr
#res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
hierarchy = res[-1]
if hierarchy is None: # empty mask
return [], False
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
res = res[-2]
res = [x.flatten() for x in res]
# These coordinates from OpenCV are integers in range [0, W-1 or H-1].
# We add 0.5 to turn them into real-value coordinate space. A better solution
# would be to first +0.5 and then dilate the returned polygon by 0.5.
res = [x + 0.5 for x in res if len(x) >= 6]
return res, has_holes
def polygons_to_mask(self, polygons):
rle = mask_util.frPyObjects(polygons, self.height, self.width)
rle = mask_util.merge(rle)
return mask_util.decode(rle)[:, :]
def area(self):
return self.mask.sum()
def bbox(self):
p = mask_util.frPyObjects(self.polygons, self.height, self.width)
p = mask_util.merge(p)
bbox = mask_util.toBbox(p)
bbox[2] += bbox[0]
bbox[3] += bbox[1]
return bbox
dictionary = "aàáạảãâầấậẩẫăằắặẳẵAÀÁẠẢÃĂẰẮẶẲẴÂẦẤẬẨẪeèéẹẻẽêềếệểễEÈÉẸẺẼÊỀẾỆỂỄoòóọỏõôồốộổỗơờớợởỡOÒÓỌỎÕÔỒỐỘỔỖƠỜỚỢỞỠiìíịỉĩIÌÍỊỈĨuùúụủũưừứựửữƯỪỨỰỬỮUÙÚỤỦŨyỳýỵỷỹYỲÝỴỶỸ"
def make_groups():
groups = []
i = 0
while i < len(dictionary) - 5:
group = [c for c in dictionary[i : i + 6]]
i += 6
groups.append(group)
return groups
groups = make_groups()
TONES = ["", "ˋ", "ˊ", "﹒", "ˀ", "˜"]
SOURCES = ["ă", "â", "Ă", "Â", "ê", "Ê", "ô", "ơ", "Ô", "Ơ", "ư", "Ư", "Đ", "đ"]
TARGETS = ["aˇ", "aˆ", "Aˇ", "Aˆ", "eˆ", "Eˆ", "oˆ", "o˒", "Oˆ", "O˒", "u˒", "U˒", "D-", "d‑"]
def correct_tone_position(word):
word = word[:-1]
if len(word) < 2:
pass
first_ord_char = ""
second_order_char = ""
for char in word:
for group in groups:
if char in group:
second_order_char = first_ord_char
first_ord_char = group[0]
if word[-1] == first_ord_char and second_order_char != "":
pair_chars = ["qu", "Qu", "qU", "QU", "gi", "Gi", "gI", "GI"]
for pair in pair_chars:
if pair in word and second_order_char in ["u", "U", "i", "I"]:
return first_ord_char
return second_order_char
return first_ord_char
def vintext_decoder(recognition):
for char in TARGETS:
recognition = recognition.replace(char, SOURCES[TARGETS.index(char)])
if len(recognition) < 1:
return recognition
if recognition[-1] in TONES:
if len(recognition) < 2:
return recognition
replace_char = correct_tone_position(recognition)
tone = recognition[-1]
recognition = recognition[:-1]
for group in groups:
if replace_char in group:
recognition = recognition.replace(replace_char, group[TONES.index(tone)])
return recognition
|