File size: 5,417 Bytes
1865436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import copy
import logging

import numpy as np
import torch

from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data.transforms import TransformGen
from detectron2.structures import BoxMode
from PIL import Image

__all__ = ["SWINTSDatasetMapper"]


def build_transform_gen(cfg, is_train):
    """
    Create a list of :class:`TransformGen` from config.
    Returns:
        list[TransformGen]
    """
    if is_train:
        min_size = cfg.INPUT.MIN_SIZE_TRAIN
        max_size = cfg.INPUT.MAX_SIZE_TRAIN
        sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
    else:
        min_size = cfg.INPUT.MIN_SIZE_TEST
        max_size = cfg.INPUT.MAX_SIZE_TEST
        sample_style = "choice"
    if sample_style == "range":
        assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size))

    logger = logging.getLogger(__name__)
    tfm_gens = []
    tfm_gens.append(T.RandomBrightness(0.5,2))
    tfm_gens.append(T.RandomContrast(0.5,2))
    tfm_gens.append(T.RandomSaturation(0.5,2))
    tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style))
    if is_train:
        logger.info("TransformGens used in training: " + str(tfm_gens))
    return tfm_gens

@torch.no_grad()
class SWINTSDatasetMapper:
    """
    A callable which takes a dataset dict in Detectron2 Dataset format,
    and map it into a format used by SparseRCNN.

    The callable currently does the following:

    1. Read the image from "file_name"
    2. Applies geometric transforms to the image and annotation
    3. Find and applies suitable cropping to the image and annotation
    4. Prepare image and annotation to Tensors
    """

    def __init__(self, cfg, is_train=True):
        if cfg.INPUT.CROP.ENABLED and is_train:
            self.crop_gen = [
                #T.ResizeShortestEdge([400, 500, 600], sample_style="choice"),
                #T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE),
                T.RandomCropWithInstance(
                    cfg.INPUT.CROP.TYPE,
                    cfg.INPUT.CROP.SIZE,
                    cfg.INPUT.CROP.CROP_INSTANCE
                    )
            ]
            self.rotate_gen = [
                    T.RandomRotation(angle=[-90,90],sample_style="range")
                    ]
        else:
            self.crop_gen = None
        self.tfm_gens = build_transform_gen(cfg, is_train)
        logging.getLogger(__name__).info(
            "Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen))
        )

        self.img_format = cfg.INPUT.FORMAT
        self.is_train = is_train

    def __call__(self, dataset_dict):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.

        Returns:
            dict: a format that builtin models in detectron2 accept
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
        utils.check_image_size(dataset_dict, image)

        boxes = np.asarray(
            [
                BoxMode.convert(
                    instance["bbox"], instance["bbox_mode"], BoxMode.XYXY_ABS
                )
                for instance in dataset_dict["annotations"]
            ]
        )
        augmentation = []
        if self.crop_gen is None:
            image, transforms = T.apply_transform_gens(self.tfm_gens, image)
        else:
            if np.random.rand() > 0.5:
                augmentation = self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:]
            else:
                augmentation = self.tfm_gens
            if np.random.rand() > 0.5:
                augmentation = augmentation[:-1] + self.rotate_gen + augmentation[-1:]
            aug_input = T.StandardAugInput(image, boxes=boxes)
            transforms = aug_input.apply_augmentations(augmentation)
            image = aug_input.image
        
        image_shape = image.shape[:2]  # h, w
        # print(image_shape)

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))

        if not self.is_train:
            # USER: Modify this if you want to keep them for some reason.
            dataset_dict.pop("annotations", None)
            return dataset_dict

        if "annotations" in dataset_dict:
            # USER: Modify this if you want to keep them for some reason.
            for anno in dataset_dict["annotations"]:
                # anno.pop("segmentation", None)
                anno.pop("keypoints", None)

            # USER: Implement additional transformations if you have other types of data
            annos = [
                utils.transform_instance_annotations(obj, transforms, image_shape)
                for obj in dataset_dict.pop("annotations")
                if obj.get("iscrowd", 0) == 0
            ]
            instances = utils.annotations_to_instances(annos, image_shape)
            dataset_dict["instances"] = utils.filter_empty_instances(instances)
        return dataset_dict