Spaces:
Build error
Build error
File size: 20,794 Bytes
1865436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import copy
import math
from typing import Optional, List
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from detectron2.modeling.poolers import ROIPooler, cat
from detectron2.structures import Boxes, pairwise_iou
from detectron2.layers import Conv2d, ConvTranspose2d, ShapeSpec, get_norm
from detectron2.modeling.matcher import Matcher
from .rec_stage import REC_STAGE
_DEFAULT_SCALE_CLAMP = math.log(100000.0 / 16)
def _get_src_permutation_idx(indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
class DynamicHead(nn.Module):
def __init__(self, cfg, roi_input_shape):
super().__init__()
# Build RoI.
box_pooler = self._init_box_pooler(cfg, roi_input_shape)
self.box_pooler = box_pooler
box_pooler_rec = self._init_box_pooler_rec(cfg, roi_input_shape)
self.box_pooler_rec = box_pooler_rec
# Build heads.
num_classes = cfg.MODEL.SWINTS.NUM_CLASSES
self.hidden_dim = cfg.MODEL.SWINTS.HIDDEN_DIM
dim_feedforward = cfg.MODEL.SWINTS.DIM_FEEDFORWARD
nhead = cfg.MODEL.SWINTS.NHEADS
dropout = cfg.MODEL.SWINTS.DROPOUT
activation = cfg.MODEL.SWINTS.ACTIVATION
self.train_num_proposal = cfg.MODEL.SWINTS.NUM_PROPOSALS
self.num_heads = cfg.MODEL.SWINTS.NUM_HEADS
rcnn_head = RCNNHead(cfg, self.hidden_dim, num_classes, dim_feedforward, nhead, dropout, activation)
self.head_series = _get_clones(rcnn_head, self.num_heads)
self.return_intermediate = cfg.MODEL.SWINTS.DEEP_SUPERVISION
self.cfg =cfg
# Build recognition heads
self.rec_stage = REC_STAGE(cfg, self.hidden_dim, num_classes, dim_feedforward, nhead, dropout, activation)
self.cnn = nn.Sequential(
nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,1),
nn.BatchNorm2d(self.hidden_dim),
nn.ReLU(True),
nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,1),
nn.BatchNorm2d(self.hidden_dim),
nn.ReLU(True),
)
#DC
self.conv = nn.ModuleList([
nn.Sequential(
nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,2,2),
nn.BatchNorm2d(self.hidden_dim),
nn.ReLU(True),
nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,4,4),
nn.BatchNorm2d(self.hidden_dim),
nn.ReLU(True),
nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,1),
nn.BatchNorm2d(self.hidden_dim),
nn.ReLU(True),)
for i in range(4)
]
)
# Init parameters.
self.num_classes = num_classes
prior_prob = cfg.MODEL.SWINTS.PRIOR_PROB
self.bias_value = -math.log((1 - prior_prob) / prior_prob)
self._reset_parameters()
def _reset_parameters(self):
# init all parameters.
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
# initialize the bias for focal loss.
if p.shape[-1] == self.num_classes:
nn.init.constant_(p, self.bias_value)
@staticmethod
def _init_box_pooler(cfg, input_shape):
in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
# If StandardROIHeads is applied on multiple feature maps (as in FPN),
# then we share the same predictors and therefore the channel counts must be the same
in_channels = [input_shape[f].channels for f in in_features]
# Check all channel counts are equal
assert len(set(in_channels)) == 1, in_channels
box_pooler = ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
pooler_type=pooler_type,
)
return box_pooler
@staticmethod
def _init_box_pooler_rec(cfg, input_shape):
in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
pooler_resolution = cfg.MODEL.REC_HEAD.POOLER_RESOLUTION
pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
# If StandardROIHeads is applied on multiple feature maps (as in FPN),
# then we share the same predictors and therefore the channel counts must be the same
in_channels = [input_shape[f].channels for f in in_features]
# Check all channel counts are equal
assert len(set(in_channels)) == 1, in_channels
box_pooler = ROIPooler(
output_size=pooler_resolution,
scales= pooler_scales,
sampling_ratio=sampling_ratio,
pooler_type=pooler_type,
)
return box_pooler
def extra_rec_feat(self, matcher, mask_encoding, targets, N, bboxes, class_logits, pred_bboxes, mask_logits, proposal_features, features):
gt_masks = list()
gt_boxes = list()
proposal_boxes_pred = list()
masks_pred = list()
pred_mask = mask_logits.detach()
N, nr_boxes = bboxes.shape[:2]
if targets:
output = {'pred_logits': class_logits, 'pred_boxes': pred_bboxes, 'pred_masks': mask_logits}
indices = matcher(output, targets, mask_encoding)
idx = _get_src_permutation_idx(indices)
target_rec = torch.cat([t['rec'][i] for t, (_, i) in zip(targets, indices)], dim=0)
target_rec = target_rec.repeat(2,1)
else:
idx = None
scores = torch.sigmoid(class_logits)
labels = torch.arange(2, device=bboxes.device).\
unsqueeze(0).repeat(self.train_num_proposal, 1).flatten(0, 1)
inter_class_logits = []
inter_pred_bboxes = []
inter_pred_masks = []
inter_pred_label = []
for b in range(N):
if targets:
gt_boxes.append(Boxes(targets[b]['boxes_xyxy'][indices[b][1]]))
gt_masks.append(targets[b]['gt_masks'][indices[b][1]])
proposal_boxes_pred.append(Boxes(bboxes[b][indices[b][0]]))
tmp_mask = mask_encoding.decoder(pred_mask[b]).view(-1,28,28)
tmp_mask = tmp_mask[indices[b][0]]
tmp_mask2 = torch.full_like(tmp_mask,0).cuda()
tmp_mask2[tmp_mask>0.4]=1
masks_pred.append(tmp_mask2)
else:
# post_processing
num_proposals = self.cfg.MODEL.SWINTS.TEST_NUM_PROPOSALS
scores_per_image, topk_indices = scores[b].flatten(0, 1).topk(num_proposals, sorted=False)
labels_per_image = labels[topk_indices]
box_pred_per_image = bboxes[b].view(-1, 1, 4).repeat(1, 2, 1).view(-1, 4)
box_pred_per_image = box_pred_per_image[topk_indices]
mask_pred_per_image = mask_logits.view(-1, self.cfg.MODEL.SWINTS.MASK_DIM)
mask_pred_per_image = mask_encoding.decoder(mask_pred_per_image, is_train=False)
mask_pred_per_image = mask_pred_per_image.view(-1, 1, 28, 28)
n, c, w, h = mask_pred_per_image.size()
mask_pred_per_image = torch.repeat_interleave(mask_pred_per_image,2,1).view(-1, c, w, h)
mask_pred_per_image = mask_pred_per_image[topk_indices]
proposal_features = proposal_features[b].view(-1, 1, self.hidden_dim).repeat(1, 2, 1).view(-1, self.hidden_dim)
proposal_features = proposal_features[topk_indices]
proposal_boxes_pred.append(Boxes(box_pred_per_image))
gt_masks.append(mask_pred_per_image)
inter_class_logits.append(scores_per_image)
inter_pred_bboxes.append(box_pred_per_image)
inter_pred_masks.append(mask_pred_per_image)
inter_pred_label.append(labels_per_image)
# get recognition roi region
if targets:
gt_roi_features = self.box_pooler_rec(features, gt_boxes)
pred_roi_features = self.box_pooler_rec(features, proposal_boxes_pred)
masks_pred = torch.cat(masks_pred).cuda()
gt_masks = torch.cat(gt_masks).cuda()
rec_map = torch.cat((gt_roi_features,pred_roi_features),0)
gt_masks = torch.cat((gt_masks,masks_pred),0)
else:
rec_map = self.box_pooler_rec(features, proposal_boxes_pred)
gt_masks = torch.cat(gt_masks).cuda()
nr_boxes = rec_map.shape[0]
if targets:
rec_map = rec_map[:self.cfg.MODEL.REC_HEAD.BATCH_SIZE]
else:
gt_masks_b = torch.full_like(gt_masks,0).cuda()
gt_masks_b[gt_masks>0.4]=1
gt_masks_b = gt_masks_b.squeeze()
gt_masks = gt_masks_b
del gt_masks_b
if targets:
return proposal_features, gt_masks[:self.cfg.MODEL.REC_HEAD.BATCH_SIZE], idx, rec_map, target_rec[:self.cfg.MODEL.REC_HEAD.BATCH_SIZE]
else:
return inter_class_logits, inter_pred_bboxes, inter_pred_masks, inter_pred_label, proposal_features, gt_masks, idx, rec_map, nr_boxes
def forward(self, features, init_bboxes, init_features, targets = None, mask_encoding = None, matcher=None):
inter_class_logits = []
inter_pred_bboxes = []
inter_pred_masks = []
inter_pred_label = []
bs = len(features[0])
bboxes = init_bboxes
proposal_features = init_features.clone()
for i_idx in range(len(features)):
features[i_idx] = self.conv[i_idx](features[i_idx]) + features[i_idx]
for i, rcnn_head in enumerate(self.head_series):
class_logits, pred_bboxes, proposal_features, mask_logits = rcnn_head(features, bboxes, proposal_features, self.box_pooler)
if self.return_intermediate:
inter_class_logits.append(class_logits)
inter_pred_bboxes.append(pred_bboxes)
inter_pred_masks.append(mask_logits)
bboxes = pred_bboxes.detach()
# extract recognition feature.
N, nr_boxes = bboxes.shape[:2]
if targets:
proposal_features, gt_masks, idx, rec_map, target_rec = \
self.extra_rec_feat(matcher, mask_encoding, targets, N, bboxes, class_logits, pred_bboxes, mask_logits, proposal_features, features)
else:
inter_class_logits, inter_pred_bboxes, inter_pred_masks, inter_pred_label, proposal_features, gt_masks, idx, rec_map, nr_boxes = \
self.extra_rec_feat(matcher, mask_encoding, targets, N, bboxes, class_logits, pred_bboxes, mask_logits, proposal_features, features)
rec_map = self.cnn(rec_map)
rec_proposal_features = proposal_features.clone()
if targets:
rec_result = self.rec_stage(rec_map, rec_proposal_features, gt_masks, N, nr_boxes, idx, target_rec)
else:
rec_result = self.rec_stage(rec_map, rec_proposal_features, gt_masks, N, nr_boxes)
rec_result = torch.tensor(rec_result)
if self.return_intermediate:
return torch.stack(inter_class_logits), torch.stack(inter_pred_bboxes), torch.stack(inter_pred_masks), rec_result
return class_logits[None], pred_bboxes[None], mask_logits[None]
class RCNNHead(nn.Module):
def __init__(self, cfg, d_model, num_classes, dim_feedforward=2048, nhead=8, dropout=0.1, activation="relu",
scale_clamp: float = _DEFAULT_SCALE_CLAMP, bbox_weights=(2.0, 2.0, 1.0, 1.0)):
super().__init__()
self.d_model = d_model
# dynamic.
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.inst_interact = DynamicConv(cfg)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = nn.ELU(inplace=True)
# cls.
num_cls = cfg.MODEL.SWINTS.NUM_CLS
cls_module = list()
for _ in range(num_cls):
cls_module.append(nn.Linear(d_model, d_model, False))
cls_module.append(nn.LayerNorm(d_model))
cls_module.append(nn.ELU(inplace=True))
self.cls_module = nn.ModuleList(cls_module)
# reg.
num_reg = cfg.MODEL.SWINTS.NUM_REG
reg_module = list()
for _ in range(num_reg):
reg_module.append(nn.Linear(d_model, d_model, False))
reg_module.append(nn.LayerNorm(d_model))
reg_module.append(nn.ELU(inplace=True))
self.reg_module = nn.ModuleList(reg_module)
# mask.
num_mask = cfg.MODEL.SWINTS.NUM_MASK
mask_module = list()
for _ in range(num_mask):
mask_module.append(nn.Linear(d_model, d_model, False))
mask_module.append(nn.LayerNorm(d_model))
mask_module.append(nn.ELU(inplace=True))
self.mask_module = nn.ModuleList(mask_module)
self.mask_logits = nn.Linear(d_model, cfg.MODEL.SWINTS.MASK_DIM)
# pred.
self.class_logits = nn.Linear(d_model, num_classes)
self.bboxes_delta = nn.Linear(d_model, 4)
self.scale_clamp = scale_clamp
self.bbox_weights = bbox_weights
def forward(self, features, bboxes, pro_features, pooler):
"""
:param bboxes: (N, nr_boxes, 4)
:param pro_features: (N, nr_boxes, d_model)
"""
N, nr_boxes = bboxes.shape[:2]
# roi_feature.
proposal_boxes = list()
for b in range(N):
proposal_boxes.append(Boxes(bboxes[b]))
roi_features = pooler(features, proposal_boxes)
roi_features = roi_features.view(N * nr_boxes, self.d_model, -1).permute(2, 0, 1)
# self_att.
pro_features = pro_features.view(N, nr_boxes, self.d_model).permute(1, 0, 2)
pro_features2 = self.self_attn(pro_features, pro_features, value=pro_features)[0]
pro_features = pro_features + self.dropout1(pro_features2)
del pro_features2
pro_features = self.norm1(pro_features)
# inst_interact.
pro_features = pro_features.view(nr_boxes, N, self.d_model).permute(1, 0, 2).reshape(1, N * nr_boxes, self.d_model)
pro_features2 = self.inst_interact(pro_features, roi_features)
pro_features = pro_features + self.dropout2(pro_features2)
del pro_features2
obj_features = self.norm2(pro_features)
# obj_feature.
obj_features2 = self.linear2(self.dropout(self.activation(self.linear1(obj_features))))
obj_features = obj_features + self.dropout3(obj_features2)
del obj_features2
obj_features = self.norm3(obj_features)
fc_feature = obj_features.transpose(0, 1).reshape(N * nr_boxes, -1)
cls_feature = fc_feature.clone()
reg_feature = fc_feature.clone()
mask_feature = fc_feature.clone()
del fc_feature
for mask_layer in self.mask_module:
mask_feature = mask_layer(mask_feature)
mask_logits = self.mask_logits(mask_feature)
del mask_feature
for cls_layer in self.cls_module:
cls_feature = cls_layer(cls_feature)
for reg_layer in self.reg_module:
reg_feature = reg_layer(reg_feature)
class_logits = self.class_logits(cls_feature)
bboxes_deltas = self.bboxes_delta(reg_feature)
del cls_feature
del reg_feature
pred_bboxes = self.apply_deltas(bboxes_deltas, bboxes.view(-1, 4))
return class_logits.view(N, nr_boxes, -1), pred_bboxes.view(N, nr_boxes, -1), obj_features, mask_logits.view(N, nr_boxes, -1)
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
deltas[i] represents k potentially different class-specific
box transformations for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
boxes = boxes.to(deltas.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.bbox_weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
return pred_boxes
class DynamicConv(nn.Module):
def __init__(self, cfg):
super().__init__()
self.hidden_dim = cfg.MODEL.SWINTS.HIDDEN_DIM
self.dim_dynamic = cfg.MODEL.SWINTS.DIM_DYNAMIC
self.num_dynamic = cfg.MODEL.SWINTS.NUM_DYNAMIC
self.num_params = self.hidden_dim * self.dim_dynamic
self.dynamic_layer = nn.Linear(self.hidden_dim, self.num_dynamic * self.num_params)
self.norm1 = nn.LayerNorm(self.dim_dynamic)
self.norm2 = nn.LayerNorm(self.hidden_dim)
self.activation = nn.ELU(inplace=True)
pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
num_output = self.hidden_dim * pooler_resolution ** 2
self.out_layer = nn.Linear(num_output, self.hidden_dim)
self.norm3 = nn.LayerNorm(self.hidden_dim)
def forward(self, pro_features, roi_features):
'''
pro_features: (1, N * nr_boxes, self.d_model)
roi_features: (49, N * nr_boxes, self.d_model)
'''
features = roi_features.permute(1, 0, 2)
parameters = self.dynamic_layer(pro_features).permute(1, 0, 2)
param1 = parameters[:, :, :self.num_params].view(-1, self.hidden_dim, self.dim_dynamic)
param2 = parameters[:, :, self.num_params:].view(-1, self.dim_dynamic, self.hidden_dim)
del parameters
features = torch.bmm(features, param1)
del param1
features = self.norm1(features)
features = self.activation(features)
features = torch.bmm(features, param2)
del param2
features = self.norm2(features)
features = self.activation(features)
features = features.flatten(1)
features = self.out_layer(features)
features = self.norm3(features)
features = self.activation(features)
return features
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|