File size: 20,794 Bytes
1865436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import copy
import math
from typing import Optional, List

import torch
from torch import nn, Tensor
import torch.nn.functional as F

from detectron2.modeling.poolers import ROIPooler, cat
from detectron2.structures import Boxes, pairwise_iou

from detectron2.layers import Conv2d, ConvTranspose2d, ShapeSpec, get_norm

from detectron2.modeling.matcher import Matcher
from .rec_stage import REC_STAGE   

_DEFAULT_SCALE_CLAMP = math.log(100000.0 / 16)

def _get_src_permutation_idx(indices):
# permute predictions following indices
    batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
    src_idx = torch.cat([src for (src, _) in indices])
    return batch_idx, src_idx

def _get_tgt_permutation_idx(indices):
# permute targets following indices
    batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
    tgt_idx = torch.cat([tgt for (_, tgt) in indices])
    return batch_idx, tgt_idx

class DynamicHead(nn.Module):

    def __init__(self, cfg, roi_input_shape):
        super().__init__()

        # Build RoI.
        box_pooler = self._init_box_pooler(cfg, roi_input_shape)
        self.box_pooler = box_pooler
        box_pooler_rec = self._init_box_pooler_rec(cfg, roi_input_shape)
        self.box_pooler_rec = box_pooler_rec

        # Build heads.
        num_classes = cfg.MODEL.SWINTS.NUM_CLASSES
        self.hidden_dim = cfg.MODEL.SWINTS.HIDDEN_DIM
        dim_feedforward = cfg.MODEL.SWINTS.DIM_FEEDFORWARD
        nhead = cfg.MODEL.SWINTS.NHEADS
        dropout = cfg.MODEL.SWINTS.DROPOUT
        activation = cfg.MODEL.SWINTS.ACTIVATION
        self.train_num_proposal = cfg.MODEL.SWINTS.NUM_PROPOSALS
        self.num_heads = cfg.MODEL.SWINTS.NUM_HEADS
        rcnn_head = RCNNHead(cfg, self.hidden_dim, num_classes, dim_feedforward, nhead, dropout, activation)
        self.head_series = _get_clones(rcnn_head, self.num_heads)
        self.return_intermediate = cfg.MODEL.SWINTS.DEEP_SUPERVISION
        
        self.cfg =cfg

        # Build recognition heads
        self.rec_stage = REC_STAGE(cfg, self.hidden_dim, num_classes, dim_feedforward, nhead, dropout, activation)
        self.cnn = nn.Sequential(
                                nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,1),
                                nn.BatchNorm2d(self.hidden_dim),
                                nn.ReLU(True),
                                nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,1),
                                nn.BatchNorm2d(self.hidden_dim),
                                nn.ReLU(True),
                                )

        #DC
        self.conv = nn.ModuleList([
                           nn.Sequential(
                           nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,2,2),
                           nn.BatchNorm2d(self.hidden_dim),
                           nn.ReLU(True),                    
                           nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,4,4),              
                           nn.BatchNorm2d(self.hidden_dim),                                   
                           nn.ReLU(True),                        
                           nn.Conv2d(self.hidden_dim, self.hidden_dim,3,1,1),              
                           nn.BatchNorm2d(self.hidden_dim),                                 
                           nn.ReLU(True),)                                     
                           for i in range(4) 
                           ]                 
                           )
        
        
        # Init parameters.
        self.num_classes = num_classes
        prior_prob = cfg.MODEL.SWINTS.PRIOR_PROB
        self.bias_value = -math.log((1 - prior_prob) / prior_prob)
        self._reset_parameters()

    def _reset_parameters(self):
        # init all parameters.
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

            # initialize the bias for focal loss.
            if p.shape[-1] == self.num_classes:
                nn.init.constant_(p, self.bias_value)

    @staticmethod
    def _init_box_pooler(cfg, input_shape):

        in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
        sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE

        # If StandardROIHeads is applied on multiple feature maps (as in FPN),
        # then we share the same predictors and therefore the channel counts must be the same
        in_channels = [input_shape[f].channels for f in in_features]
        # Check all channel counts are equal
        assert len(set(in_channels)) == 1, in_channels

        box_pooler = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
            pooler_type=pooler_type,
        )
        return box_pooler
    @staticmethod
    def _init_box_pooler_rec(cfg, input_shape):
        in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.REC_HEAD.POOLER_RESOLUTION
        pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
        sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE

        # If StandardROIHeads is applied on multiple feature maps (as in FPN),
        # then we share the same predictors and therefore the channel counts must be the same
        in_channels = [input_shape[f].channels for f in in_features]
        # Check all channel counts are equal
        assert len(set(in_channels)) == 1, in_channels
        box_pooler = ROIPooler(
            output_size=pooler_resolution,
            scales= pooler_scales,
            sampling_ratio=sampling_ratio,
            pooler_type=pooler_type,
        )
        return box_pooler
   
    def extra_rec_feat(self, matcher, mask_encoding, targets, N, bboxes, class_logits, pred_bboxes, mask_logits, proposal_features, features):
        gt_masks = list()
        gt_boxes = list()
        proposal_boxes_pred = list()
        masks_pred = list()
        pred_mask = mask_logits.detach()

        N, nr_boxes = bboxes.shape[:2]
        if targets:
            output = {'pred_logits': class_logits, 'pred_boxes': pred_bboxes, 'pred_masks': mask_logits}
            indices = matcher(output, targets, mask_encoding)
            idx = _get_src_permutation_idx(indices)
            target_rec = torch.cat([t['rec'][i] for t, (_, i) in zip(targets, indices)], dim=0)
            target_rec = target_rec.repeat(2,1)
        else:
            idx = None
            scores = torch.sigmoid(class_logits)
            labels = torch.arange(2, device=bboxes.device).\
                    unsqueeze(0).repeat(self.train_num_proposal, 1).flatten(0, 1)
            inter_class_logits = []
            inter_pred_bboxes = []
            inter_pred_masks = []
            inter_pred_label = []
        for b in range(N):
            if targets:
                gt_boxes.append(Boxes(targets[b]['boxes_xyxy'][indices[b][1]]))
                gt_masks.append(targets[b]['gt_masks'][indices[b][1]])
                proposal_boxes_pred.append(Boxes(bboxes[b][indices[b][0]]))
                tmp_mask = mask_encoding.decoder(pred_mask[b]).view(-1,28,28)
                tmp_mask = tmp_mask[indices[b][0]]
                tmp_mask2 = torch.full_like(tmp_mask,0).cuda()
                tmp_mask2[tmp_mask>0.4]=1
                masks_pred.append(tmp_mask2)
            else:
                # post_processing
                num_proposals = self.cfg.MODEL.SWINTS.TEST_NUM_PROPOSALS
                scores_per_image, topk_indices = scores[b].flatten(0, 1).topk(num_proposals, sorted=False)
                labels_per_image = labels[topk_indices]
                box_pred_per_image = bboxes[b].view(-1, 1, 4).repeat(1, 2, 1).view(-1, 4)
                box_pred_per_image = box_pred_per_image[topk_indices]
                mask_pred_per_image = mask_logits.view(-1, self.cfg.MODEL.SWINTS.MASK_DIM)
                mask_pred_per_image = mask_encoding.decoder(mask_pred_per_image, is_train=False)
                mask_pred_per_image = mask_pred_per_image.view(-1, 1, 28, 28)
                n, c, w, h = mask_pred_per_image.size()
                mask_pred_per_image = torch.repeat_interleave(mask_pred_per_image,2,1).view(-1, c, w, h)
                mask_pred_per_image = mask_pred_per_image[topk_indices]
                proposal_features = proposal_features[b].view(-1, 1, self.hidden_dim).repeat(1, 2, 1).view(-1, self.hidden_dim)
                proposal_features = proposal_features[topk_indices]
                proposal_boxes_pred.append(Boxes(box_pred_per_image))
                gt_masks.append(mask_pred_per_image)
                inter_class_logits.append(scores_per_image)
                inter_pred_bboxes.append(box_pred_per_image)
                inter_pred_masks.append(mask_pred_per_image)
                inter_pred_label.append(labels_per_image)

        # get recognition roi region
        if targets:
            gt_roi_features = self.box_pooler_rec(features, gt_boxes)
            pred_roi_features = self.box_pooler_rec(features, proposal_boxes_pred)
            masks_pred = torch.cat(masks_pred).cuda()
            gt_masks = torch.cat(gt_masks).cuda()
            rec_map = torch.cat((gt_roi_features,pred_roi_features),0)
            gt_masks = torch.cat((gt_masks,masks_pred),0)
        else:
            rec_map = self.box_pooler_rec(features, proposal_boxes_pred)
            gt_masks = torch.cat(gt_masks).cuda()
            nr_boxes = rec_map.shape[0]
        if targets:
            rec_map = rec_map[:self.cfg.MODEL.REC_HEAD.BATCH_SIZE]
        else:
            gt_masks_b = torch.full_like(gt_masks,0).cuda()
            gt_masks_b[gt_masks>0.4]=1
            gt_masks_b = gt_masks_b.squeeze()
            gt_masks = gt_masks_b
            del gt_masks_b
        if targets:
            return proposal_features, gt_masks[:self.cfg.MODEL.REC_HEAD.BATCH_SIZE], idx, rec_map, target_rec[:self.cfg.MODEL.REC_HEAD.BATCH_SIZE]
        else:
            return inter_class_logits, inter_pred_bboxes, inter_pred_masks, inter_pred_label, proposal_features, gt_masks, idx, rec_map, nr_boxes

    def forward(self, features, init_bboxes, init_features, targets = None, mask_encoding = None, matcher=None):
    
        inter_class_logits = []
        inter_pred_bboxes = []
        inter_pred_masks = []
        inter_pred_label = []

        bs = len(features[0])
        bboxes = init_bboxes
        proposal_features = init_features.clone()
        for i_idx in range(len(features)):
           features[i_idx] = self.conv[i_idx](features[i_idx]) + features[i_idx]
        for i, rcnn_head in enumerate(self.head_series):

            class_logits, pred_bboxes, proposal_features, mask_logits = rcnn_head(features, bboxes, proposal_features, self.box_pooler)
            if self.return_intermediate:
                inter_class_logits.append(class_logits)
                inter_pred_bboxes.append(pred_bboxes)
                inter_pred_masks.append(mask_logits)
            bboxes = pred_bboxes.detach()
        
        # extract recognition feature.
        N, nr_boxes = bboxes.shape[:2]
        if targets:
            proposal_features, gt_masks, idx, rec_map, target_rec = \
                self.extra_rec_feat(matcher, mask_encoding, targets, N, bboxes, class_logits, pred_bboxes, mask_logits, proposal_features, features)
        else:
            inter_class_logits, inter_pred_bboxes, inter_pred_masks, inter_pred_label, proposal_features, gt_masks, idx, rec_map, nr_boxes = \
                self.extra_rec_feat(matcher, mask_encoding, targets, N, bboxes, class_logits, pred_bboxes, mask_logits, proposal_features, features)
       
        rec_map = self.cnn(rec_map)
        rec_proposal_features = proposal_features.clone()

        if targets:
            rec_result = self.rec_stage(rec_map, rec_proposal_features, gt_masks, N, nr_boxes, idx, target_rec)
        else:
            rec_result = self.rec_stage(rec_map, rec_proposal_features, gt_masks, N, nr_boxes)
            rec_result = torch.tensor(rec_result)
        if self.return_intermediate:
            return torch.stack(inter_class_logits), torch.stack(inter_pred_bboxes), torch.stack(inter_pred_masks), rec_result
        return class_logits[None], pred_bboxes[None], mask_logits[None]


class RCNNHead(nn.Module):

    def __init__(self, cfg, d_model, num_classes, dim_feedforward=2048, nhead=8, dropout=0.1, activation="relu",
                 scale_clamp: float = _DEFAULT_SCALE_CLAMP, bbox_weights=(2.0, 2.0, 1.0, 1.0)):
        super().__init__()

        self.d_model = d_model

        # dynamic.
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.inst_interact = DynamicConv(cfg)

        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = nn.ELU(inplace=True)

        # cls.
        num_cls = cfg.MODEL.SWINTS.NUM_CLS
        cls_module = list()
        for _ in range(num_cls):
            cls_module.append(nn.Linear(d_model, d_model, False))
            cls_module.append(nn.LayerNorm(d_model))
            cls_module.append(nn.ELU(inplace=True))
        self.cls_module = nn.ModuleList(cls_module)

        # reg.
        num_reg = cfg.MODEL.SWINTS.NUM_REG
        reg_module = list()
        for _ in range(num_reg):
            reg_module.append(nn.Linear(d_model, d_model, False))
            reg_module.append(nn.LayerNorm(d_model))
            reg_module.append(nn.ELU(inplace=True))
        self.reg_module = nn.ModuleList(reg_module)

        # mask.
        num_mask = cfg.MODEL.SWINTS.NUM_MASK
        mask_module = list()
        for _ in range(num_mask):
            mask_module.append(nn.Linear(d_model, d_model, False))
            mask_module.append(nn.LayerNorm(d_model))
            mask_module.append(nn.ELU(inplace=True))
        self.mask_module = nn.ModuleList(mask_module)
        self.mask_logits = nn.Linear(d_model, cfg.MODEL.SWINTS.MASK_DIM)

        # pred.
        self.class_logits = nn.Linear(d_model, num_classes)
        self.bboxes_delta = nn.Linear(d_model, 4)
        self.scale_clamp = scale_clamp
        self.bbox_weights = bbox_weights


    def forward(self, features, bboxes, pro_features, pooler):
        """
        :param bboxes: (N, nr_boxes, 4)
        :param pro_features: (N, nr_boxes, d_model)
        """

        N, nr_boxes = bboxes.shape[:2]
        
        # roi_feature.
        proposal_boxes = list()
        for b in range(N):
            proposal_boxes.append(Boxes(bboxes[b]))
        roi_features = pooler(features, proposal_boxes)
        roi_features = roi_features.view(N * nr_boxes, self.d_model, -1).permute(2, 0, 1)        

        # self_att.
        pro_features = pro_features.view(N, nr_boxes, self.d_model).permute(1, 0, 2)
        pro_features2 = self.self_attn(pro_features, pro_features, value=pro_features)[0]
        pro_features = pro_features + self.dropout1(pro_features2)

        del pro_features2

        pro_features = self.norm1(pro_features)

        # inst_interact.
        pro_features = pro_features.view(nr_boxes, N, self.d_model).permute(1, 0, 2).reshape(1, N * nr_boxes, self.d_model)
        pro_features2 = self.inst_interact(pro_features, roi_features)
        pro_features = pro_features + self.dropout2(pro_features2)

        del pro_features2

        obj_features = self.norm2(pro_features)

        # obj_feature.
        obj_features2 = self.linear2(self.dropout(self.activation(self.linear1(obj_features))))
        obj_features = obj_features + self.dropout3(obj_features2)

        del obj_features2

        obj_features = self.norm3(obj_features)
        
        fc_feature = obj_features.transpose(0, 1).reshape(N * nr_boxes, -1)
        cls_feature = fc_feature.clone()
        reg_feature = fc_feature.clone()

        mask_feature = fc_feature.clone()

        del fc_feature

        for mask_layer in self.mask_module:
            mask_feature = mask_layer(mask_feature)
        mask_logits = self.mask_logits(mask_feature)
        del mask_feature

        for cls_layer in self.cls_module:
            cls_feature = cls_layer(cls_feature)
        for reg_layer in self.reg_module:
            reg_feature = reg_layer(reg_feature)
        class_logits = self.class_logits(cls_feature)
        bboxes_deltas = self.bboxes_delta(reg_feature)

        del cls_feature
        del reg_feature

        pred_bboxes = self.apply_deltas(bboxes_deltas, bboxes.view(-1, 4))
        
        return class_logits.view(N, nr_boxes, -1), pred_bboxes.view(N, nr_boxes, -1), obj_features, mask_logits.view(N, nr_boxes, -1)
    

    def apply_deltas(self, deltas, boxes):
        """
        Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.

        Args:
            deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
                deltas[i] represents k potentially different class-specific
                box transformations for the single box boxes[i].
            boxes (Tensor): boxes to transform, of shape (N, 4)
        """
        boxes = boxes.to(deltas.dtype)

        widths = boxes[:, 2] - boxes[:, 0]
        heights = boxes[:, 3] - boxes[:, 1]
        ctr_x = boxes[:, 0] + 0.5 * widths
        ctr_y = boxes[:, 1] + 0.5 * heights

        wx, wy, ww, wh = self.bbox_weights
        dx = deltas[:, 0::4] / wx
        dy = deltas[:, 1::4] / wy
        dw = deltas[:, 2::4] / ww
        dh = deltas[:, 3::4] / wh

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=self.scale_clamp)
        dh = torch.clamp(dh, max=self.scale_clamp)

        pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
        pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
        pred_w = torch.exp(dw) * widths[:, None]
        pred_h = torch.exp(dh) * heights[:, None]

        pred_boxes = torch.zeros_like(deltas)
        pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w  # x1
        pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h  # y1
        pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w  # x2
        pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h  # y2

        return pred_boxes


class DynamicConv(nn.Module):

    def __init__(self, cfg):
        super().__init__()

        self.hidden_dim = cfg.MODEL.SWINTS.HIDDEN_DIM
        self.dim_dynamic = cfg.MODEL.SWINTS.DIM_DYNAMIC
        self.num_dynamic = cfg.MODEL.SWINTS.NUM_DYNAMIC
        self.num_params = self.hidden_dim * self.dim_dynamic
        self.dynamic_layer = nn.Linear(self.hidden_dim, self.num_dynamic * self.num_params)

        self.norm1 = nn.LayerNorm(self.dim_dynamic)
        self.norm2 = nn.LayerNorm(self.hidden_dim)

        self.activation = nn.ELU(inplace=True)

        pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        num_output = self.hidden_dim * pooler_resolution ** 2
        self.out_layer = nn.Linear(num_output, self.hidden_dim)
        self.norm3 = nn.LayerNorm(self.hidden_dim)

    def forward(self, pro_features, roi_features):
        '''
        pro_features: (1,  N * nr_boxes, self.d_model)
        roi_features: (49, N * nr_boxes, self.d_model)
        '''
        features = roi_features.permute(1, 0, 2)
        parameters = self.dynamic_layer(pro_features).permute(1, 0, 2)

        param1 = parameters[:, :, :self.num_params].view(-1, self.hidden_dim, self.dim_dynamic)
        param2 = parameters[:, :, self.num_params:].view(-1, self.dim_dynamic, self.hidden_dim)

        del parameters

        features = torch.bmm(features, param1)

        del param1

        features = self.norm1(features)
        features = self.activation(features)

        features = torch.bmm(features, param2)

        del param2

        features = self.norm2(features)
        features = self.activation(features)

        features = features.flatten(1)
        features = self.out_layer(features)
        features = self.norm3(features)
        features = self.activation(features)

        return features

def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])