File size: 8,696 Bytes
1865436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import argparse
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

import time
import tensorflow as tf

physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
    tf.config.experimental.set_memory_growth(physical_devices[0], True)

from PIL import Image
import cv2
import numpy as np
import matplotlib.pyplot as plt
# deep sort imports
from deep_sort import nn_matching
from application_util import preprocessing
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from _tools_ import generate_detections as gdet
# deepsort
from mrcnn.mrcnn_color import MRCNN
# ocr
# from sts.demo.sts import handle_sts

def _parse_args():
    parser = argparse.ArgumentParser(description="")
    
    parser.add_argument("--model",
                        help="detection model",
                        type=str,
                        default="./checkpoint/maskrcnn_signboard_ss.ckpt")
    parser.add_argument("--input_size",
                        help="input size",
                        type=int,
                        default=1024)
    parser.add_argument("--score",
                        help="score threshold",
                        type=float,
                        default=0.50)
    parser.add_argument("--size",
                        help="resize images to",
                        type=int,
                        default=1024)
    parser.add_argument("--video",
                        help="path to input video or set to 0 for webcam",
                        type=str,
                        default="./samples/demo.mp4")
    parser.add_argument("--output",
                        help="path to output video",
                        type=str,
                        default="./outputs/demo.mp4")
    parser.add_argument("--output_format",
                        help="codec used in VideoWriter when saving video to file",
                        type=str,
                        default='mp4v')
    parser.add_argument("--dont_show",
                        help="dont show video output",
                        type=bool,
                        default=True)
    parser.add_argument("--info",
                        help="show detailed info of tracked objects",
                        type=bool,
                        default=True)
    parser.add_argument("--count",
                        help="count objects being tracked on screen",
                        type=bool,
                        default=True)
    
    args = parser.parse_args()
    return args

def handle(args):
    # Definition of the parameters
    max_cosine_distance = 0.4
    nn_budget = None
    nms_max_overlap = 1.0
    
    # initialize deep sort
    model_filename = 'checkpoint/signboard_2793.pb'
    encoder = gdet.create_box_encoder(model_filename, batch_size=1)
    # calculate cosine distance metric
    metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
    # initialize tracker
    tracker = Tracker(metric)
    
    # initialize maskrcnn
    mrcnn = MRCNN(args.model, args.input_size, args.score)

    # load configuration for object detector
    video_path = args.video

    # begin video capture
    try:
        vid = cv2.VideoCapture(int(video_path))
    except:
        vid = cv2.VideoCapture(video_path)

    out = None

    # get video ready to save locally if flag is set
    if args.output:
        # by default VideoCapture returns float instead of int
        width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(vid.get(cv2.CAP_PROP_FPS))
        codec = cv2.VideoWriter_fourcc(*args.output_format)
        out = cv2.VideoWriter(args.output, codec, fps, (width, height))

    frame_num = 0
    # while video is running
    while True:
        return_value, frame = vid.read()
        if return_value:
            image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            image = Image.fromarray(image)
        else:
            print('Video has ended or failed, try a different video format!')
            break
        frame_num +=1
        print('Frame #: ', frame_num)
        start_time = time.time()

        boxes, scores, class_names, class_ids, class_color = mrcnn.detect_result_(image, min_score=0.5)
        
        count = len(class_names)
        
        if args.count:
            cv2.putText(frame, "Objects being tracked: {0}".format(count), (5, 35), cv2.FONT_HERSHEY_COMPLEX_SMALL, 2, (0, 255, 0), 2)
            print("Objects being tracked: {0}".format(count))

        # encode yolo detections and feed to tracker
        features = encoder(frame, boxes)
        detections = [Detection(box, score, class_name, feature) for box, score, class_name, feature in zip(boxes, scores, class_names, features)]

        #initialize color map
        cmap = plt.get_cmap('tab20b')
        colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)]

        # run non-maxima supression
        boxs = np.array([d.tlwh for d in detections])
        scores = np.array([d.confidence for d in detections])
        classes = np.array([d.class_name for d in detections])
        indices = preprocessing.non_max_suppression(boxs, classes, nms_max_overlap, scores)
        detections = [detections[i] for i in indices]       

        # Call the tracker
        tracker.predict()
        tracker.update(detections)

        # update tracks
        with open("./outputs/{}.txt".format(frame_num), "a+", encoding="utf-8") as ff:
            for track in tracker.tracks:
                if not track.is_confirmed() or track.time_since_update > 1:
                    continue  
                bbox = track.to_tlbr()
                
            # crop to ids folder
                ids_path = "./ids/"+str(track.track_id)
                if not os.path.isdir(ids_path):
                    os.mkdir(ids_path)
                crop_ids = frame[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])]
                num_ids = 0
                
                while os.path.isfile(os.path.join(ids_path, str(track.track_id) + "_" + str(frame_num) + "_" + str(num_ids)+".png")):
                    num_ids += 1
                final_ids_path = os.path.join(ids_path, str(track.track_id) + "_" + str(frame_num) + "_" + str(num_ids)+".png")
                cv2.imwrite(final_ids_path, crop_ids)
            
            for track in tracker.tracks:
                if not track.is_confirmed() or track.time_since_update > 1:
                    continue  
                bbox = track.to_tlbr()
                class_name = track.get_class()
                
            # predict ocr
                crop_ids = frame[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])]
                dict_box_sign_out, dict_rec_sign_out = [], [] # handle_sts(crop_ids)
            # draw bbox on screen
                color = colors[int(track.track_id) % len(colors)]
                color = [i * 255 for i in color]
                cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 2)
                cv2.rectangle(frame, (int(bbox[0]), int(bbox[1]-30)), (int(bbox[0])+(len(class_name)+len(str(track.track_id)))*17, int(bbox[1])), color, -1)
                cv2.putText(frame, class_name + "-" + str(track.track_id),(int(bbox[0]), int(bbox[1]-10)),0, 0.75, (255,255,255),2)

                dict_rec_sign_out_join = "_".join(dict_rec_sign_out)
                cv2.putText(frame, dict_rec_sign_out_join, (int(bbox[0]), int(bbox[1]+20)), 0, 0.75, (255, 255, 255), 2)

            # if enable info flag then print details about each track
                if args.info:
                    print("Tracker ID: {}, Class: {},  BBox Coords (xmin, ymin, xmax, ymax): {}".format(str(track.track_id), class_name, (int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]))))
                    ff.write("{}, {}, {}, {}, {}, {}\n".format(str(track.track_id), int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]), dict_rec_sign_out_join))
            ff.close()

        # calculate frames per second of running detections
        fps = 1.0 / (time.time() - start_time)
        print("FPS: %.2f" % fps)
        result = frame
        
        if not args.dont_show:
            cv2.imshow("Output Video", result)
        
        # if output flag is set, save video file
        if args.output:
            cv2.imwrite("./outputs/{0}.jpg".format(frame_num), result)
            out.write(result)
        if cv2.waitKey(1) & 0xFF == ord('q'): break
    cv2.destroyAllWindows()

def main():
    args = _parse_args()
    handle(args)

if __name__ == '__main__':
    main()