Spaces:
Build error
Build error
# | |
# Modified by Peize Sun, Rufeng Zhang | |
# Contact: {sunpeize, cxrfzhang}@foxmail.com | |
# | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
SparseRCNN Training Script. | |
This script is a simplified version of the training script in detectron2/tools. | |
""" | |
import os | |
import itertools | |
import time | |
from typing import Any, Dict, List, Set | |
import torch | |
import detectron2.utils.comm as comm | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import MetadataCatalog, build_detection_train_loader | |
from detectron2.engine import AutogradProfiler, DefaultTrainer, default_argument_parser, default_setup, launch | |
from detectron2.evaluation import COCOEvaluator, verify_results, TextEvaluator | |
from detectron2.solver.build import maybe_add_gradient_clipping | |
from swints import SWINTSDatasetMapper, add_SWINTS_config | |
class Trainer(DefaultTrainer): | |
# """ | |
# Extension of the Trainer class adapted to SparseRCNN. | |
# """ | |
def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
""" | |
Create evaluator(s) for a given dataset. | |
This uses the special metadata "evaluator_type" associated with each builtin dataset. | |
For your own dataset, you can simply create an evaluator manually in your | |
script and do not have to worry about the hacky if-else logic here. | |
""" | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
return TextEvaluator(dataset_name, cfg, True, output_folder) | |
def build_train_loader(cls, cfg): | |
mapper = SWINTSDatasetMapper(cfg, is_train=True) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
def build_optimizer(cls, cfg, model): | |
params: List[Dict[str, Any]] = [] | |
memo: Set[torch.nn.parameter.Parameter] = set() | |
for key, value in model.named_parameters(recurse=True): | |
if not value.requires_grad: | |
continue | |
# Avoid duplicating parameters | |
if value in memo: | |
continue | |
memo.add(value) | |
lr = cfg.SOLVER.BASE_LR | |
weight_decay = cfg.SOLVER.WEIGHT_DECAY | |
if "backbone" in key: | |
lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER | |
params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] | |
def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class | |
# detectron2 doesn't have full model gradient clipping now | |
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE | |
enable = ( | |
cfg.SOLVER.CLIP_GRADIENTS.ENABLED | |
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" | |
and clip_norm_val > 0.0 | |
) | |
class FullModelGradientClippingOptimizer(optim): | |
def step(self, closure=None): | |
all_params = itertools.chain(*[x["params"] for x in self.param_groups]) | |
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) | |
super().step(closure=closure) | |
return FullModelGradientClippingOptimizer if enable else optim | |
optimizer_type = cfg.SOLVER.OPTIMIZER | |
if optimizer_type == "SGD": | |
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( | |
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM | |
) | |
elif optimizer_type == "ADAMW": | |
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( | |
params, cfg.SOLVER.BASE_LR | |
) | |
else: | |
raise NotImplementedError(f"no optimizer type {optimizer_type}") | |
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": | |
optimizer = maybe_add_gradient_clipping(cfg, optimizer) | |
return optimizer | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
add_SWINTS_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
default_setup(cfg, args) | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume) | |
res = Trainer.test(cfg, model) | |
if comm.is_main_process(): | |
verify_results(cfg, res) | |
return res | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
return trainer.train() | |
if __name__ == "__main__": | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |