dafajudin commited on
Commit
b59d7ee
·
1 Parent(s): 0c2fc7b
Files changed (1) hide show
  1. index.html +85 -0
index.html ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>VQA Kalbe Bangkit</title>
7
+ <style>
8
+ body {
9
+ font-family: Arial, sans-serif;
10
+ background: linear-gradient(to right, blue, purple);
11
+ color: white;
12
+ text-align: center;
13
+ padding: 20px;
14
+ }
15
+ .container {
16
+ max-width: 800px;
17
+ margin: 0 auto;
18
+ background: rgba(255, 255, 255, 0.1);
19
+ padding: 20px;
20
+ border-radius: 10px;
21
+ }
22
+ .container img {
23
+ max-width: 100%;
24
+ height: auto;
25
+ }
26
+ pre {
27
+ text-align: left;
28
+ background: rgba(0, 0, 0, 0.7);
29
+ padding: 10px;
30
+ border-radius: 5px;
31
+ overflow-x: auto;
32
+ }
33
+ a {
34
+ color: #00e6e6;
35
+ text-decoration: none;
36
+ }
37
+ a:hover {
38
+ text-decoration: underline;
39
+ }
40
+ </style>
41
+ </head>
42
+ <body>
43
+ <div class="container">
44
+ <h1>Kalbe Farma - Visual Question Answering (VQA) for Medical Imaging</h1>
45
+
46
+ <h2>Overview</h2>
47
+ <p>
48
+ The project addresses the challenge of accurate and efficient medical imaging analysis in healthcare, aiming to reduce human error and workload for radiologists.
49
+ The proposed solution involves developing advanced AI models for Visual Question Answering (VQA) to assist healthcare professionals in analyzing medical images
50
+ quickly and accurately. These models will be integrated into a user-friendly web application, providing a practical tool for real-world healthcare settings.
51
+ </p>
52
+
53
+ <h2>Dataset</h2>
54
+ <p>
55
+ The model is trained using the <a href="https://huggingface.co/datasets/flaviagiammarino/vqa-rad/viewer" target="_blank">Hugging face</a>.
56
+ </p>
57
+
58
+ <p>Reference: <a href="https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252" target="_blank">ScienceDirect</a></p>
59
+
60
+ <h2>Model Architecture</h2>
61
+ <p>
62
+ The model uses a Parameterized Hypercomplex Shared Encoder network (PHYSEnet).
63
+ </p>
64
+ <img src="path/to/your/image.png" alt="Model Architecture">
65
+ <p>Reference: <a href="https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252" target="_blank">ScienceDirect</a></p>
66
+
67
+ <h2>Demo</h2>
68
+ <p>
69
+ Please select the example below or upload 4 pairs of mammography exam results.
70
+ </p>
71
+
72
+ <h2>Usage</h2>
73
+ <pre>
74
+ <code>
75
+ cd src
76
+
77
+ Run the following command below:
78
+ python app.py
79
+ </code>
80
+ </pre>
81
+
82
+ <p>Check out the configuration reference at <a href="https://huggingface.co/docs/hub/spaces-config-reference" target="_blank">Hugging Face</a></p>
83
+ </div>
84
+ </body>
85
+ </html>