Spaces:
Sleeping
Sleeping
dafajudin
commited on
Commit
·
b59d7ee
1
Parent(s):
0c2fc7b
add html
Browse files- index.html +85 -0
index.html
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>VQA Kalbe Bangkit</title>
|
7 |
+
<style>
|
8 |
+
body {
|
9 |
+
font-family: Arial, sans-serif;
|
10 |
+
background: linear-gradient(to right, blue, purple);
|
11 |
+
color: white;
|
12 |
+
text-align: center;
|
13 |
+
padding: 20px;
|
14 |
+
}
|
15 |
+
.container {
|
16 |
+
max-width: 800px;
|
17 |
+
margin: 0 auto;
|
18 |
+
background: rgba(255, 255, 255, 0.1);
|
19 |
+
padding: 20px;
|
20 |
+
border-radius: 10px;
|
21 |
+
}
|
22 |
+
.container img {
|
23 |
+
max-width: 100%;
|
24 |
+
height: auto;
|
25 |
+
}
|
26 |
+
pre {
|
27 |
+
text-align: left;
|
28 |
+
background: rgba(0, 0, 0, 0.7);
|
29 |
+
padding: 10px;
|
30 |
+
border-radius: 5px;
|
31 |
+
overflow-x: auto;
|
32 |
+
}
|
33 |
+
a {
|
34 |
+
color: #00e6e6;
|
35 |
+
text-decoration: none;
|
36 |
+
}
|
37 |
+
a:hover {
|
38 |
+
text-decoration: underline;
|
39 |
+
}
|
40 |
+
</style>
|
41 |
+
</head>
|
42 |
+
<body>
|
43 |
+
<div class="container">
|
44 |
+
<h1>Kalbe Farma - Visual Question Answering (VQA) for Medical Imaging</h1>
|
45 |
+
|
46 |
+
<h2>Overview</h2>
|
47 |
+
<p>
|
48 |
+
The project addresses the challenge of accurate and efficient medical imaging analysis in healthcare, aiming to reduce human error and workload for radiologists.
|
49 |
+
The proposed solution involves developing advanced AI models for Visual Question Answering (VQA) to assist healthcare professionals in analyzing medical images
|
50 |
+
quickly and accurately. These models will be integrated into a user-friendly web application, providing a practical tool for real-world healthcare settings.
|
51 |
+
</p>
|
52 |
+
|
53 |
+
<h2>Dataset</h2>
|
54 |
+
<p>
|
55 |
+
The model is trained using the <a href="https://huggingface.co/datasets/flaviagiammarino/vqa-rad/viewer" target="_blank">Hugging face</a>.
|
56 |
+
</p>
|
57 |
+
|
58 |
+
<p>Reference: <a href="https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252" target="_blank">ScienceDirect</a></p>
|
59 |
+
|
60 |
+
<h2>Model Architecture</h2>
|
61 |
+
<p>
|
62 |
+
The model uses a Parameterized Hypercomplex Shared Encoder network (PHYSEnet).
|
63 |
+
</p>
|
64 |
+
<img src="path/to/your/image.png" alt="Model Architecture">
|
65 |
+
<p>Reference: <a href="https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252" target="_blank">ScienceDirect</a></p>
|
66 |
+
|
67 |
+
<h2>Demo</h2>
|
68 |
+
<p>
|
69 |
+
Please select the example below or upload 4 pairs of mammography exam results.
|
70 |
+
</p>
|
71 |
+
|
72 |
+
<h2>Usage</h2>
|
73 |
+
<pre>
|
74 |
+
<code>
|
75 |
+
cd src
|
76 |
+
|
77 |
+
Run the following command below:
|
78 |
+
python app.py
|
79 |
+
</code>
|
80 |
+
</pre>
|
81 |
+
|
82 |
+
<p>Check out the configuration reference at <a href="https://huggingface.co/docs/hub/spaces-config-reference" target="_blank">Hugging Face</a></p>
|
83 |
+
</div>
|
84 |
+
</body>
|
85 |
+
</html>
|