Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,13 @@
|
|
1 |
-
import spaces
|
2 |
import torch
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
import yt_dlp as youtube_dl
|
6 |
from transformers import pipeline
|
7 |
-
|
8 |
-
|
9 |
import tempfile
|
10 |
-
import os
|
11 |
|
|
|
12 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
13 |
BATCH_SIZE = 8
|
14 |
-
FILE_LIMIT_MB = 1000
|
15 |
-
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
16 |
-
|
17 |
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
pipe = pipeline(
|
@@ -23,83 +17,42 @@ pipe = pipeline(
|
|
23 |
device=device,
|
24 |
)
|
25 |
|
|
|
26 |
|
27 |
-
|
28 |
def transcribe(inputs, task):
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
-
|
32 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
33 |
-
return
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
40 |
-
" </center>"
|
41 |
-
)
|
42 |
-
return HTML_str
|
43 |
-
|
44 |
-
def download_yt_audio(yt_url, filename):
|
45 |
-
info_loader = youtube_dl.YoutubeDL()
|
46 |
|
47 |
try:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
61 |
-
|
62 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
64 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
-
|
67 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
68 |
-
|
69 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
-
try:
|
71 |
-
ydl.download([yt_url])
|
72 |
-
except youtube_dl.utils.ExtractorError as err:
|
73 |
-
raise gr.Error(str(err))
|
74 |
-
|
75 |
-
@spaces.GPU
|
76 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
77 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
-
|
79 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
81 |
-
download_yt_audio(yt_url, filepath)
|
82 |
-
with open(filepath, "rb") as f:
|
83 |
-
inputs = f.read()
|
84 |
-
|
85 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
-
|
88 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
89 |
-
|
90 |
-
return html_embed_str, text
|
91 |
-
|
92 |
-
|
93 |
-
demo = gr.Blocks(theme=gr.themes.Ocean())
|
94 |
|
95 |
mf_transcribe = gr.Interface(
|
96 |
fn=transcribe,
|
97 |
inputs=[
|
98 |
-
gr.Audio(
|
99 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
100 |
],
|
101 |
outputs="text",
|
102 |
-
title="
|
103 |
description=(
|
104 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
@@ -111,7 +64,7 @@ mf_transcribe = gr.Interface(
|
|
111 |
file_transcribe = gr.Interface(
|
112 |
fn=transcribe,
|
113 |
inputs=[
|
114 |
-
gr.Audio(
|
115 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
116 |
],
|
117 |
outputs="text",
|
@@ -124,23 +77,47 @@ file_transcribe = gr.Interface(
|
|
124 |
allow_flagging="never",
|
125 |
)
|
126 |
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
inputs=[
|
130 |
-
gr.
|
131 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
|
|
132 |
],
|
133 |
-
outputs=["
|
134 |
-
title="Whisper Large V3: Transcribe
|
135 |
description=(
|
136 |
-
"Transcribe
|
137 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
138 |
-
" arbitrary length."
|
139 |
),
|
140 |
allow_flagging="never",
|
141 |
)
|
142 |
|
|
|
143 |
with demo:
|
144 |
-
gr.TabbedInterface([
|
145 |
|
146 |
-
demo.queue().launch(
|
|
|
|
|
1 |
import torch
|
|
|
2 |
import gradio as gr
|
|
|
3 |
from transformers import pipeline
|
4 |
+
import openai # Import OpenAI for GPT-4 API integration
|
5 |
+
import os # 確保導入 os
|
6 |
import tempfile
|
|
|
7 |
|
8 |
+
# 使用 Whisper Large 模型進行語音轉錄
|
9 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
10 |
BATCH_SIZE = 8
|
|
|
|
|
|
|
11 |
device = 0 if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
pipe = pipeline(
|
|
|
17 |
device=device,
|
18 |
)
|
19 |
|
20 |
+
openai_api_key = os.getenv('OPENAI_API_KEY') # Load OpenAI API key
|
21 |
|
22 |
+
# 語音轉文字的功能
|
23 |
def transcribe(inputs, task):
|
24 |
if inputs is None:
|
25 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
26 |
+
|
27 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
28 |
+
return text
|
|
|
29 |
|
30 |
+
# 增加翻譯功能,呼叫 GPT-4 API
|
31 |
+
def translate_text(text, target_language):
|
32 |
+
prompt = f"Translate the following text to {target_language}:\n\n{text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
try:
|
35 |
+
response = openai.ChatCompletion.create(
|
36 |
+
model="gpt-4o", # 使用 GPT-4o 模型
|
37 |
+
messages=[{"role": "user", "content": prompt}],
|
38 |
+
max_tokens=500
|
39 |
+
)
|
40 |
+
translation = response.choices[0].message["content"]
|
41 |
+
return translation
|
42 |
+
except Exception as e:
|
43 |
+
return f"翻譯時出錯: {str(e)}"
|
44 |
+
|
45 |
+
# Gradio 介面
|
46 |
+
demo = gr.Blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
mf_transcribe = gr.Interface(
|
49 |
fn=transcribe,
|
50 |
inputs=[
|
51 |
+
gr.Audio(source="microphone", type="filepath"),
|
52 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
53 |
],
|
54 |
outputs="text",
|
55 |
+
title="Whisper Large V3 Turbo: Transcribe Audio",
|
56 |
description=(
|
57 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
58 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
|
|
64 |
file_transcribe = gr.Interface(
|
65 |
fn=transcribe,
|
66 |
inputs=[
|
67 |
+
gr.Audio(source="upload", type="filepath", label="Audio file"),
|
68 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
69 |
],
|
70 |
outputs="text",
|
|
|
77 |
allow_flagging="never",
|
78 |
)
|
79 |
|
80 |
+
# 增加翻譯���能,讓使用者選擇要翻譯的語言
|
81 |
+
def transcribe_and_translate(inputs, task, target_language):
|
82 |
+
text = transcribe(inputs, task)
|
83 |
+
if target_language != "None":
|
84 |
+
translated_text = translate_text(text, target_language)
|
85 |
+
return text, translated_text
|
86 |
+
return text, None
|
87 |
+
|
88 |
+
# 介面結合了轉錄和翻譯功能
|
89 |
+
mf_transcribe_and_translate = gr.Interface(
|
90 |
+
fn=transcribe_and_translate,
|
91 |
+
inputs=[
|
92 |
+
gr.Audio(source="microphone", type="filepath"),
|
93 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
94 |
+
gr.Dropdown(choices=["French", "German", "Spanish", "Chinese", "None"], label="Translate to Language", value="None")
|
95 |
+
],
|
96 |
+
outputs=["text", "text"], # 兩個輸出,一個是原文,一個是翻譯後的文字
|
97 |
+
title="Whisper Large V3 Turbo: Transcribe and Translate",
|
98 |
+
description=(
|
99 |
+
"Transcribe audio from microphone inputs and optionally translate it to a selected language using OpenAI GPT-4."
|
100 |
+
),
|
101 |
+
allow_flagging="never",
|
102 |
+
)
|
103 |
+
|
104 |
+
file_transcribe_and_translate = gr.Interface(
|
105 |
+
fn=transcribe_and_translate,
|
106 |
inputs=[
|
107 |
+
gr.Audio(source="upload", type="filepath", label="Audio file"),
|
108 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
109 |
+
gr.Dropdown(choices=["French", "German", "Spanish", "Chinese", "None"], label="Translate to Language", value="None")
|
110 |
],
|
111 |
+
outputs=["text", "text"], # 兩個輸出,一個是原文,一個是翻譯後的文字
|
112 |
+
title="Whisper Large V3: Transcribe and Translate",
|
113 |
description=(
|
114 |
+
"Transcribe audio from uploaded files and optionally translate it to a selected language using OpenAI GPT-4."
|
|
|
|
|
115 |
),
|
116 |
allow_flagging="never",
|
117 |
)
|
118 |
|
119 |
+
# 結合 Gradio 介面
|
120 |
with demo:
|
121 |
+
gr.TabbedInterface([mf_transcribe_and_translate, file_transcribe_and_translate], ["Microphone Transcription", "File Transcription"])
|
122 |
|
123 |
+
demo.queue().launch()
|