Spaces:
Runtime error
Runtime error
File size: 57,904 Bytes
2e4e349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 |
# -*- coding: utf-8 -*-
"""Easy GUI (for RVC v2, with crepe) (with improved downloader)
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1Gj6UTf2gicndUW_tVheVhTXIIYpFTYc7
### RVC GENERAL COVER GUIDE:
https://docs.google.com/document/d/13_l1bd1Osgz7qlAZn-zhklCbHpVRk6bYOuAuB78qmsE/edit?usp=sharing
### RVC VOICE TRAINING GUIDE:
https://docs.google.com/document/d/13ebnzmeEBc6uzYCMt-QVFQk-whVrK4zw8k7_Lw3Bv_A/edit?usp=sharing
##**EDIT 6/17:** Easy GUI interface finally updated by Rejekts, the original colab author!
####Major thanks and shoutout to him! Advanced settings have been added to a separate menu. If this new interface gives you troubles, simply enable the old interface again, or ping me @kalomaze in the AI HUB Discord.
Keep in mind 'mangio-crepe' is superior to the other 'crepe' in both training and inference. The hop size won't be properly configurable otherwise.
##Step 1. Install (it will take 30-45 seconds)
[](https://colab.research.google.com/github/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
If you want to open the ORIGINAL Colab go here!
"""
#@title GPU Check
!nvidia-smi
#@title Install Dependencies (and load your cached install if it exists to boost times)
# Required Libraries
import os
import csv
import shutil
import tarfile
import subprocess
from pathlib import Path
from datetime import datetime
#@markdown This will forcefully update dependencies even after the initial install seemed to have functioned.
ForceUpdateDependencies = False #@param{type:"boolean"}
#@markdown This will force temporary storage to be used, so it will download dependencies every time instead of on Drive. Not needed, unless you really want that 160mb storage. (Turned on by default for non-training colab to boost the initial launch speed)
ForceTemporaryStorage = True #@param{type:"boolean"}
# Mounting Google Drive
if not ForceTemporaryStorage:
from google.colab import drive
if not os.path.exists('/content/drive'):
drive.mount('/content/drive')
else:
print('Drive is already mounted. Proceeding...')
# Function to install dependencies with progress
def install_packages():
packages = ['build-essential', 'python3-dev', 'ffmpeg', 'aria2']
pip_packages = ['pip', 'setuptools', 'wheel', 'httpx==0.23.0', 'faiss-gpu', 'fairseq', 'gradio==3.34.0',
'ffmpeg', 'ffmpeg-python', 'praat-parselmouth', 'pyworld', 'numpy==1.23.5',
'numba==0.56.4', 'librosa==0.9.2', 'mega.py', 'gdown', 'onnxruntime', 'pyngrok==4.1.12']
print("Updating and installing system packages...")
for package in packages:
print(f"Installing {package}...")
subprocess.check_call(['apt-get', 'install', '-qq', '-y', package])
print("Updating and installing pip packages...")
subprocess.check_call(['pip', 'install', '--upgrade'] + pip_packages)
print('Packages up to date.')
# Function to scan a directory and writes filenames and timestamps
def scan_and_write(base_path, output_file):
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
for dirpath, dirs, files in os.walk(base_path):
for filename in files:
fname = os.path.join(dirpath, filename)
try:
mtime = os.path.getmtime(fname)
writer.writerow([fname, mtime])
except Exception as e:
print(f'Skipping irrelevant nonexistent file {fname}: {str(e)}')
print(f'Finished recording filesystem timestamps to {output_file}.')
# Function to compare files
def compare_files(old_file, new_file):
old_files = {}
new_files = {}
with open(old_file, 'r') as f:
reader = csv.reader(f)
old_files = {rows[0]:rows[1] for rows in reader}
with open(new_file, 'r') as f:
reader = csv.reader(f)
new_files = {rows[0]:rows[1] for rows in reader}
removed_files = old_files.keys() - new_files.keys()
added_files = new_files.keys() - old_files.keys()
unchanged_files = old_files.keys() & new_files.keys()
changed_files = {f for f in unchanged_files if old_files[f] != new_files[f]}
for file in removed_files:
print(f'File has been removed: {file}')
for file in changed_files:
print(f'File has been updated: {file}')
return list(added_files) + list(changed_files)
# Check if CachedRVC.tar.gz exists
if ForceTemporaryStorage:
file_path = '/content/CachedRVC.tar.gz'
else:
file_path = '/content/drive/MyDrive/RVC_Cached/CachedRVC.tar.gz'
content_file_path = '/content/CachedRVC.tar.gz'
extract_path = '/'
!pip install -q gTTS
!pip install -q elevenlabs
def extract_wav2lip_tar_files():
!wget https://github.com/777gt/EVC/raw/main/wav2lip-HD.tar.gz
!wget https://github.com/777gt/EVC/raw/main/wav2lip-cache.tar.gz
with tarfile.open('/content/wav2lip-cache.tar.gz', 'r:gz') as tar:
for member in tar.getmembers():
target_path = os.path.join('/', member.name)
try:
tar.extract(member, '/')
except:
pass
with tarfile.open('/content/wav2lip-HD.tar.gz') as tar:
tar.extractall('/content')
extract_wav2lip_tar_files()
if not os.path.exists(file_path):
folder_path = os.path.dirname(file_path)
os.makedirs(folder_path, exist_ok=True)
print('No cached dependency install found. Attempting to download GitHub backup..')
try:
download_url = "https://github.com/kalomaze/QuickMangioFixes/releases/download/release3/CachedRVC.tar.gz"
!wget -O $file_path $download_url
print('Download completed successfully!')
except Exception as e:
print('Download failed:', str(e))
# Delete the failed download file
if os.path.exists(file_path):
os.remove(file_path)
print('Failed download file deleted. Continuing manual backup..')
if Path(file_path).exists():
if ForceTemporaryStorage:
print('Finished downloading CachedRVC.tar.gz.')
else:
print('CachedRVC.tar.gz found on Google Drive. Proceeding to copy and extract...')
# Check if ForceTemporaryStorage is True and skip copying if it is
if ForceTemporaryStorage:
pass
else:
shutil.copy(file_path, content_file_path)
print('Beginning backup copy operation...')
with tarfile.open(content_file_path, 'r:gz') as tar:
for member in tar.getmembers():
target_path = os.path.join(extract_path, member.name)
try:
tar.extract(member, extract_path)
except Exception as e:
print('Failed to extract a file (this isn\'t normal)... forcing an update to compensate')
ForceUpdateDependencies = True
print(f'Extraction of {content_file_path} to {extract_path} completed.')
if ForceUpdateDependencies:
install_packages()
ForceUpdateDependencies = False
else:
print('CachedRVC.tar.gz not found. Proceeding to create an index of all current files...')
scan_and_write('/usr/', '/content/usr_files.csv')
install_packages()
scan_and_write('/usr/', '/content/usr_files_new.csv')
changed_files = compare_files('/content/usr_files.csv', '/content/usr_files_new.csv')
with tarfile.open('/content/CachedRVC.tar.gz', 'w:gz') as new_tar:
for file in changed_files:
new_tar.add(file)
print(f'Added to tar: {file}')
os.makedirs('/content/drive/MyDrive/RVC_Cached', exist_ok=True)
shutil.copy('/content/CachedRVC.tar.gz', '/content/drive/MyDrive/RVC_Cached/CachedRVC.tar.gz')
print('Updated CachedRVC.tar.gz copied to Google Drive.')
print('Dependencies fully up to date; future runs should be faster.')
#@title Clone Github Repository
import os
# Change the current directory to /content/
os.chdir('/content/')
# Changes defaults of the infer-web.py
def edit_file(file_path):
temp_file_path = "/tmp/temp_file.py"
changes_made = False
with open(file_path, "r") as file, open(temp_file_path, "w") as temp_file:
previous_line = ""
for line in file:
new_line = line.replace("value=160", "value=128")
if new_line != line:
print("Replaced 'value=160' with 'value=128'")
changes_made = True
line = new_line
new_line = line.replace("crepe hop length: 160", "crepe hop length: 128")
if new_line != line:
print("Replaced 'crepe hop length: 160' with 'crepe hop length: 128'")
changes_made = True
line = new_line
new_line = line.replace("value=0.88", "value=0.75")
if new_line != line:
print("Replaced 'value=0.88' with 'value=0.75'")
changes_made = True
line = new_line
if "label=i18n(\"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络\")" in previous_line and "value=1," in line:
new_line = line.replace("value=1,", "value=0.25,")
if new_line != line:
print("Replaced 'value=1,' with 'value=0.25,' based on the condition")
changes_made = True
line = new_line
if 'choices=["pm", "harvest", "dio", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny"], # Fork Feature. Add Crepe-Tiny' in previous_line:
if 'value="pm",' in line:
new_line = line.replace('value="pm",', 'value="mangio-crepe",')
if new_line != line:
print("Replaced 'value=\"pm\",' with 'value=\"mangio-crepe\",' based on the condition")
changes_made = True
line = new_line
temp_file.write(line)
previous_line = line
# After finished, we replace the original file with the temp one
import shutil
shutil.move(temp_file_path, file_path)
if changes_made:
print("Changes made and file saved successfully.")
else:
print("No changes were needed.")
repo_path = '/content/Retrieval-based-Voice-Conversion-WebUI'
if not os.path.exists(repo_path):
# Clone the latest code from the Mangio621/Mangio-RVC-Fork repository
!git clone https://github.com/Mangio621/Mangio-RVC-Fork.git
os.chdir('/content/Mangio-RVC-Fork')
!wget https://github.com/777gt/EasyGUI-RVC-Fork/raw/main/EasierGUI.py
os.chdir('/content/')
!mv /content/Mangio-RVC-Fork /content/Retrieval-based-Voice-Conversion-WebUI
edit_file("/content/Retrieval-based-Voice-Conversion-WebUI/infer-web.py")
# Make necessary output dirs and example files
!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/audios
!wget https://github.com/777gt/EVC/raw/main/someguy.mp3 -O /content/Retrieval-based-Voice-Conversion-WebUI/audios/someguy.mp3
!wget https://github.com/777gt/EVC/raw/main/somegirl.mp3 -O /content/Retrieval-based-Voice-Conversion-WebUI/audios/somegirl.mp3
# Import custom translation
!rm -rf /content/Retrieval-based-Voice-Conversion-WebUI/il8n/en_US.json
!wget https://github.com/kalomaze/QuickMangioFixes/releases/download/release3/en_US.json -P /content/Retrieval-based-Voice-Conversion-WebUI/il8n/
else:
print(f"The repository already exists at {repo_path}. Skipping cloning.")
# Download the credentials file for RVC archive sheet
!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/stats/
!wget -q https://cdn.discordapp.com/attachments/945486970883285045/1114717554481569802/peppy-generator-388800-07722f17a188.json -O /content/Retrieval-based-Voice-Conversion-WebUI/stats/peppy-generator-388800-07722f17a188.json
# Forcefully delete any existing torchcrepe dependency from an earlier run
!rm -rf /Retrieval-based-Voice-Conversion-WebUI/torchcrepe
# Download the torchcrepe folder from the maxrmorrison/torchcrepe repository
!git clone https://github.com/maxrmorrison/torchcrepe.git
!mv torchcrepe/torchcrepe Retrieval-based-Voice-Conversion-WebUI/
!rm -rf torchcrepe # Delete the torchcrepe repository folder
# Change the current directory to /content/Retrieval-based-Voice-Conversion-WebUI
os.chdir('/content/Retrieval-based-Voice-Conversion-WebUI')
!mkdir -p pretrained uvr5_weights
#@title Download the Base Model
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D32k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D40k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D48k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G32k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G40k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G48k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D32k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D40k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D48k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G32k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G40k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G48k.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP2-人声vocals+非人声instrumentals.pth
#!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP5-主旋律人声vocals+其他instrumentals.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o hubert_base.pt
#@markdown This will also create an RVC and dataset folders in your drive if they don't already exist.
#from google.colab import drive
#drive.mount('/content/drive', force_remount=True)
"""##Models List:
###You can download from **any** link you have as long as it's RVC. (Mega, Drive, etc.)
Biggest organized voice collection at #voice-models in https://discord.gg/aihub
Model archive spreadsheet, sorted by popularity: https://docs.google.com/spreadsheets/d/1tAUaQrEHYgRsm1Lvrnj14HFHDwJWl0Bd9x0QePewNco/
Backup model archive (outdated): https://huggingface.co/QuickWick/Music-AI-Voices/tree/main
"""
#@markdown #Step 2. Download The Model
#@markdown Link the URL path to the model (Mega, Drive, etc.) and start the code
from mega import Mega
import os
import shutil
from urllib.parse import urlparse, parse_qs
import urllib.parse
from google.oauth2.service_account import Credentials
import gspread
import pandas as pd
from tqdm import tqdm
from bs4 import BeautifulSoup
import requests
import hashlib
def calculate_md5(file_path):
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
# Initialize gspread
scope = ['https://www.googleapis.com/auth/spreadsheets',
'https://www.googleapis.com/auth/drive.file',
'https://www.googleapis.com/auth/drive']
config_path = '/content/Retrieval-based-Voice-Conversion-WebUI/stats/peppy-generator-388800-07722f17a188.json'
if os.path.exists(config_path):
# File exists, proceed with creation of creds and client
creds = Credentials.from_service_account_file(config_path, scopes=scope)
client = gspread.authorize(creds)
else:
# File does not exist, print message and skip creation of creds and client
print("Sheet credential file missing.")
# Open the Google Sheet (this will write any URLs so I can easily track popular models)
book = client.open("RVC Model Archive Sheet")
sheet = book.get_worksheet(3) # get the fourth sheet
def update_sheet(url, filename, filesize, md5_hash, index_version):
data = sheet.get_all_records()
df = pd.DataFrame(data)
if md5_hash in df['MD5 Hash'].values:
idx = df[df['MD5 Hash'] == md5_hash].index[0]
# Update download count
df.loc[idx, 'Download Counter'] = int(df.loc[idx, 'Download Counter']) + 1
sheet.update_cell(idx+2, df.columns.get_loc('Download Counter') + 1, int(df.loc[idx, 'Download Counter']))
# Find the next available Alt URL field
alt_url_cols = [col for col in df.columns if 'Alt URL' in col]
alt_url_values = [df.loc[idx, col_name] for col_name in alt_url_cols]
# Check if url is the same as the main URL or any of the Alt URLs
if url not in alt_url_values and url != df.loc[idx, 'URL']:
for col_name in alt_url_cols:
if df.loc[idx, col_name] == '':
df.loc[idx, col_name] = url
sheet.update_cell(idx+2, df.columns.get_loc(col_name) + 1, url)
break
else:
# Prepare a new row as a dictionary
new_row_dict = {'URL': url, 'Download Counter': 1, 'Filename': filename,
'Filesize (.pth)': filesize, 'MD5 Hash': md5_hash, 'RVC Version': index_version}
alt_url_cols = [col for col in df.columns if 'Alt URL' in col]
for col in alt_url_cols:
new_row_dict[col] = '' # Leave the Alt URL fields empty
# Convert fields other than 'Download Counter' and 'Filesize (.pth)' to string
new_row_dict = {key: str(value) if key not in ['Download Counter', 'Filesize (.pth)'] else value for key, value in new_row_dict.items()}
# Append new row to sheet in the same order as existing columns
ordered_row = [new_row_dict.get(col, '') for col in df.columns]
sheet.append_row(ordered_row, value_input_option='RAW')
condition1 = False
condition2 = False
already_downloaded = False
# condition1 here is to check if the .index was imported. 2 is for if the .pth was.
!rm -rf /content/unzips/
!rm -rf /content/zips/
!mkdir /content/unzips
!mkdir /content/zips
def sanitize_directory(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
if filename == ".DS_Store" or filename.startswith("._"):
os.remove(file_path)
elif os.path.isdir(file_path):
sanitize_directory(file_path)
url = 'https://huggingface.co/Flyleaf/EltonJohnModern/resolve/main/2019Elton.zip' #@param {type:"string"}
model_zip = urlparse(url).path.split('/')[-2] + '.zip'
model_zip_path = '/content/zips/' + model_zip
#@markdown This option should only be ticked if you don't want your model listed on the public tracker.
private_model = False #@param{type:"boolean"}
if url != '':
MODEL = "" # Initialize MODEL variable
!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/$MODEL
!mkdir -p /content/zips/
!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/weights/ # Create the 'weights' directory
if "drive.google.com" in url:
!gdown $url --fuzzy -O "$model_zip_path"
elif "/blob/" in url:
url = url.replace("blob", "resolve")
print("Resolved URL:", url) # Print the resolved URL
!wget "$url" -O "$model_zip_path"
elif "mega.nz" in url:
m = Mega()
print("Starting download from MEGA....")
m.download_url(url, '/content/zips')
elif "/tree/main" in url:
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
temp_url = ''
for link in soup.find_all('a', href=True):
if link['href'].endswith('.zip'):
temp_url = link['href']
break
if temp_url:
url = temp_url
print("Updated URL:", url) # Print the updated URL
url = url.replace("blob", "resolve")
print("Resolved URL:", url) # Print the resolved URL
if "huggingface.co" not in url:
url = "https://huggingface.co" + url
!wget "$url" -O "$model_zip_path"
else:
print("No .zip file found on the page.")
# Handle the case when no .zip file is found
else:
!wget "$url" -O "$model_zip_path"
for filename in os.listdir("/content/zips"):
if filename.endswith(".zip"):
zip_file = os.path.join("/content/zips", filename)
shutil.unpack_archive(zip_file, "/content/unzips", 'zip')
sanitize_directory("/content/unzips")
def find_pth_file(folder):
for root, dirs, files in os.walk(folder):
for file in files:
if file.endswith(".pth"):
file_name = os.path.splitext(file)[0]
if file_name.startswith("G_") or file_name.startswith("P_"):
config_file = os.path.join(root, "config.json")
if os.path.isfile(config_file):
print("Outdated .pth detected! This is not compatible with the RVC method. Find the RVC equivalent model!")
continue # Continue searching for a valid file
file_path = os.path.join(root, file)
if os.path.getsize(file_path) > 100 * 1024 * 1024: # Check file size in bytes (100MB)
print("Skipping unusable training file:", file)
continue # Continue searching for a valid file
return file_name
return None
MODEL = find_pth_file("/content/unzips")
if MODEL is not None:
print("Found .pth file:", MODEL + ".pth")
else:
print("Error: Could not find a valid .pth file within the extracted zip.")
print("If there's an error above this talking about 'Access denied', try one of the Alt URLs in the Google Sheets for this model.")
MODEL = ""
global condition3
condition3 = True
index_path = ""
def find_version_number(index_path):
if condition2 and not condition1:
if file_size >= 55180000:
return 'RVC v2'
else:
return 'RVC v1'
filename = os.path.basename(index_path)
if filename.endswith("_v2.index"):
return 'RVC v2'
elif filename.endswith("_v1.index"):
return 'RVC v1'
else:
if file_size >= 55180000:
return 'RVC v2'
else:
return 'RVC v1'
if MODEL != "":
# Move model into logs folder
for root, dirs, files in os.walk('/content/unzips'):
for file in files:
file_path = os.path.join(root, file)
if file.endswith(".index"):
print("Found index file:", file)
condition1 = True
logs_folder = os.path.join('/content/Retrieval-based-Voice-Conversion-WebUI/logs', MODEL)
os.makedirs(logs_folder, exist_ok=True) # Create the logs folder if it doesn't exist
# Delete identical .index file if it exists
if file.endswith(".index"):
identical_index_path = os.path.join(logs_folder, file)
if os.path.exists(identical_index_path):
os.remove(identical_index_path)
shutil.move(file_path, logs_folder)
index_path = os.path.join(logs_folder, file) # Set index_path variable
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
destination_path = f'/content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODEL}.pth'
if os.path.exists(destination_path):
print("You already downloaded this model. Re-importing anyways..")
already_downloaded = True
shutil.move(file_path, destination_path)
condition2 = True
if already_downloaded is False and os.path.exists(config_path):
file_size = os.path.getsize(destination_path) # Get file size
md5_hash = calculate_md5(destination_path) # Calculate md5 hash
index_version = find_version_number(index_path) # Get the index version
if condition1 is False:
logs_folder = os.path.join('/content/Retrieval-based-Voice-Conversion-WebUI/logs', MODEL)
os.makedirs(logs_folder, exist_ok=True)
# this is here so it doesnt crash if the model is missing an index for some reason
if condition2 and not condition1:
print("Model partially imported! No .index file was found in the model download. The author may have forgotten to add the index file.")
if already_downloaded is False and os.path.exists(config_path) and not private_model:
update_sheet(url, MODEL, file_size, md5_hash, index_version)
elif condition1 and condition2:
print("Model successfully imported!")
if already_downloaded is False and os.path.exists(config_path) and not private_model:
update_sheet(url, MODEL, file_size, md5_hash, index_version)
elif condition3:
pass # Do nothing when condition3 is true
else:
print("URL cannot be left empty. If you don't want to download a model now, just skip this step.")
!rm -r /content/unzips/
!rm -r /content/zips/
"""#Step 3. Start the GUI, then open the public URL. It's gonna look like this:

"""
# Commented out IPython magic to ensure Python compatibility.
# %cd /content/Retrieval-based-Voice-Conversion-WebUI
#@markdown Keep this option enabled to use the simplified, easy interface.
#@markdown <br>Otherwise, it will use the advanced one that you see in the YouTube guide.
easy_gui = True #@param{type:"boolean"}
if easy_gui:
!python3 EasierGUI.py --colab --pycmd python3
else:
!python3 infer-web.py --colab --pycmd python3
"""* For the original RVC GUI, visit: https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
* If you need to train a model visit: https://colab.research.google.com/drive/1TU-kkQWVf-PLO_hSa2QCMZS1XF5xVHqs?usp=sharing
#Other
"""
#@markdown #Upload files (or do it through colab panel instead)
#@markdown Run this cell to upload your vocal files that you want to use, (or zip files containing audio) to your Colab. <br>
#@markdown Alternatively, you can upload from the colab files panel as seen in the video, but this should be more convenient. This method may not work on iOS.
from google.colab import files
from IPython.display import display, Javascript
import os
import shutil
import zipfile
import ipywidgets as widgets
# Create the target directory if it doesn't exist
target_dir = '/content/Retrieval-based-Voice-Conversion-WebUI/audios/'
if not os.path.exists(target_dir):
os.makedirs(target_dir)
uploaded = files.upload()
for fn in uploaded.keys():
# Check if the uploaded file is a zip file
if fn.endswith('.zip'):
# Write the uploaded zip file to the target directory
zip_path = os.path.join(target_dir, fn)
with open(zip_path, 'wb') as f:
f.write(uploaded[fn])
unzip_dir = os.path.join(target_dir, fn[:-4]) # Remove the .zip extension from the folder name
# Extract the zip file
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(unzip_dir)
# Delete the zip file
if os.path.exists(zip_path):
os.remove(zip_path)
print('Zip file "{name}" extracted and removed. Files are in: {folder}'.format(name=fn, folder=unzip_dir))
# Display copy path buttons for each extracted file
for extracted_file in os.listdir(unzip_dir):
extracted_file_path = os.path.join(unzip_dir, extracted_file)
extracted_file_length = os.path.getsize(extracted_file_path)
extracted_file_label = widgets.HTML(
value='Extracted file "{name}" with length {length} bytes'.format(name=extracted_file, length=extracted_file_length)
)
display(extracted_file_label)
extracted_file_path_text = widgets.HTML(
value='File saved to: <a href="{}" target="_blank">{}</a>'.format(extracted_file_path, extracted_file_path)
)
extracted_copy_button = widgets.Button(description='Copy')
extracted_copy_button_file_path = extracted_file_path # Make a local copy of the file path
def copy_to_clipboard(b):
js_code = '''
const el = document.createElement('textarea');
el.value = "{path}";
el.setAttribute('readonly', '');
el.style.position = 'absolute';
el.style.left = '-9999px';
document.body.appendChild(el);
el.select();
document.execCommand('copy');
document.body.removeChild(el);
'''
display(Javascript(js_code.format(path=extracted_copy_button_file_path)))
extracted_copy_button.on_click(copy_to_clipboard)
display(widgets.HBox([extracted_file_path_text, extracted_copy_button]))
continue
# For non-zip files
# Save the file to the target directory
file_path = os.path.join(target_dir, fn)
with open(file_path, 'wb') as f:
f.write(uploaded[fn])
file_length = len(uploaded[fn])
file_label = widgets.HTML(
value='User uploaded file "{name}" with length {length} bytes'.format(name=fn, length=file_length)
)
display(file_label)
# Check if the uploaded file is a .pth or .index file
if fn.endswith('.pth') or fn.endswith('.index'):
warning_text = widgets.HTML(
value='<b style="color: red;">Warning:</b> You are uploading a model file in the wrong place. Please ensure it is uploaded to the correct location.'
)
display(warning_text)
# Create a clickable path with copy button
file_path_text = widgets.HTML(
value='File saved to: <a href="{}" target="_blank">{}</a>'.format(file_path, file_path)
)
copy_button = widgets.Button(description='Copy')
copy_button_file_path = file_path # Make a local copy of the file path
def copy_to_clipboard(b):
js_code = '''
const el = document.createElement('textarea');
el.value = "{path}";
el.setAttribute('readonly', '');
el.style.position = 'absolute';
el.style.left = '-9999px';
document.body.appendChild(el);
el.select();
document.execCommand('copy');
document.body.removeChild(el);
'''
display(Javascript(js_code.format(path=copy_button_file_path)))
copy_button.on_click(copy_to_clipboard)
display(widgets.HBox([file_path_text, copy_button]))
# Remove the original uploaded files from /content/
for fn in uploaded.keys():
if os.path.exists(os.path.join("/content/", fn)):
os.remove(os.path.join("/content/", fn))
#@markdown ##Click this to import a ZIP of AUDIO FILES.
#@markdown Link the URL path to the audio files (Mega, Drive, etc.) and start the code
url = 'INSERTURLHERE' #@param {type:"string"}
import subprocess
import os
import shutil
from urllib.parse import urlparse, parse_qs
from google.colab import output
from google.colab import drive
mount_to_drive = True
mount_path = '/content/drive/MyDrive'
def mount(gdrive=False):
if gdrive:
if not os.path.exists("/content/drive/MyDrive"):
try:
drive.mount("/content/drive", force_remount=True)
except:
drive._mount("/content/drive", force_remount=True)
else:
pass
mount(mount_to_drive)
def check_package_installed(package_name):
command = f"pip show {package_name}"
result = subprocess.run(command.split(), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return result.returncode == 0
def install_package(package_name):
command = f"pip install {package_name} --quiet"
subprocess.run(command.split(), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
if not check_package_installed("mega.py"):
install_package("mega.py")
from mega import Mega
import os
import shutil
from urllib.parse import urlparse, parse_qs
import urllib.parse
!rm -rf /content/unzips/
!rm -rf /content/zips/
!mkdir /content/unzips
!mkdir /content/zips
def sanitize_directory(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
if filename == ".DS_Store" or filename.startswith("._"):
os.remove(file_path)
elif os.path.isdir(file_path):
sanitize_directory(file_path)
audio_zip = urlparse(url).path.split('/')[-2] + '.zip'
audio_zip_path = '/content/zips/' + audio_zip
if url != '':
if "drive.google.com" in url:
!gdown $url --fuzzy -O "$audio_zip_path"
elif "mega.nz" in url:
m = Mega()
m.download_url(url, '/content/zips')
else:
!wget "$url" -O "$audio_zip_path"
for filename in os.listdir("/content/zips"):
if filename.endswith(".zip"):
zip_file = os.path.join("/content/zips", filename)
shutil.unpack_archive(zip_file, "/content/unzips", 'zip')
sanitize_directory("/content/unzips")
!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/audios
for filename in os.listdir("/content/unzips"):
if filename.endswith((".wav", ".mp3", ".m4a", ".flac")):
audio_file = os.path.join("/content/unzips", filename)
destination_file = os.path.join("/content/Retrieval-based-Voice-Conversion-WebUI/audios", filename)
shutil.copy2(audio_file, destination_file)
if os.path.exists(destination_file):
print(f"Copy successful: {destination_file}")
else:
print(f"Copy failed: {audio_file}")
!rm -r /content/unzips/
!rm -r /content/zips/
"""#**Consider subscribing to my Patreon!**
Benefits include:
- Full on tech support for AI covers in general
- This includes audio mixing and how to train your own models, with any tier.
- Tech support priority is given to the latter tier.
https://patreon.com/kalomaze
Your support would be greatly appreciated! On top of maintaining this colab, I also write and maintain the Google Docs guides, and plan to create a video tutorial for training voices in the future.
##Credits
**Rejekts** - Original colab author. Made easy GUI for RVC<br>
**RVC-Project dev team** - Original RVC software developers <br>
**Mangio621** - Developer of the RVC fork that added crepe support, helped me get it up and running + taught me how to use TensorBoard<br>
**Kalomaze** - Creator of this colab, added autobackup + loader feature, fixed downloader to work with zips that had parentheses + streamlined downloader, added TensorBoard picture, made the doc thats linked, general God amongst men (def not biased 100%)
#UVR Isolation Stuff
##UVR Colab Method (MDX-Net)
The following allows you to use the following models recommended for isolating acapellas for your covers:
- Kim vocal 1
- Kim vocal 2 (higher quality, but may have more background vocals that need to be isolated with the Karaoke model)
Or for the best instrumental results you can later do:
- Inst HQ 1
Reverb should be removed with Reverb HQ. Other remaining echo effects can be dealt with using the VR Architecture UVR colab linked below using the De-Echo models. (or done with local UVR)
"""
initialised = True
from time import sleep
from google.colab import output
from google.colab import drive
import sys
import os
import shutil
import psutil
import glob
mount_to_drive = True
mount_path = '/content/drive/MyDrive'
ai = 'https://github.com/kae0-0/Colab-for-MDX_B'
ai_version = 'https://github.com/kae0-0/Colab-for-MDX_B/raw/main/v'
onnx_list = 'https://raw.githubusercontent.com/kae0-0/Colab-for-MDX_B/main/onnx_list'
#@title Initialize UVR MDX-Net Models
#@markdown The 'ForceUpdate' option will update the models by fully reinstalling.
ForceUpdate = False #@param {type:"boolean"}
class h:
def __enter__(self):
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
def get_size(bytes, suffix='B'): # read ram
global svmem
factor = 1024
for unit in ["", "K", "M", "G", "T", "P"]:
if bytes < factor:
return f'{bytes:.2f}{unit}{suffix}'
bytes /= factor
svmem = psutil.virtual_memory()
def console(t):
get_ipython().system(t)
def LinUzip(file): # unzip call linux, force replace
console(f'unzip -o {file}')
#-------------------------------------------------------
def getONNX():
console(f'wget {onnx_list} -O onnx_list')
_onnx = open("onnx_list", "r")
_onnx = _onnx.readlines()
os.remove('onnx_list')
for model in _onnx:
_model = sanitize_filename(os.path.basename(model))
console(f'wget {model}')
LinUzip(_model)
os.remove(_model)
def getDemucs(_path):
#https://dl.fbaipublicfiles.com/demucs/v3.0/demucs_extra-3646af93.th
root = "https://dl.fbaipublicfiles.com/demucs/v3.0/"
model = {
'demucs_extra': '3646af93'
}
for models in zip(model.keys(),model.values()):
console(f'wget {root+models[0]+"-"+models[1]}.th -O {models[0]}.th')
for _ in glob.glob('*.th'):
if os.path.isfile(os.path.join(os.getcwd(),_path,_)):
os.remove(os.path.join(os.getcwd(),_path,_))
shutil.move(_,_path)
def mount(gdrive=False):
if gdrive:
if not os.path.exists("/content/drive/MyDrive"):
try:
drive.mount("/content/drive", force_remount=True)
except:
drive._mount("/content/drive", force_remount=True)
else:
pass
mount(mount_to_drive)
def toPath(path='local'):
if path == 'local':
os.chdir('/content')
elif path == 'gdrive':
os.chdir(mount_path)
def update():
with h():
console(f'wget {ai_version} -O nver')
f = open('nver', 'r')
nver = f.read()
f = open('v', 'r')
cver = f.read()
if nver != cver or ForceUpdate:
print('New update found! {}'.format(nver))
os.chdir('../')
print('Updating ai...',end=' ')
with h():
console(f'git clone {ai} temp_MDX_Colab')
console('cp -a temp_MDX_Colab/* MDX_Colab/')
console('rm -rf temp_MDX_Colab')
print('done')
os.chdir('MDX_Colab')
print('Refreshing models...', end=' ')
with h():
#getDemucs('model/')
getONNX()
print('done')
output.clear()
os.remove('v')
os.rename("nver",'v')
#os.chdir(f'{os.path.join(mount_path,"MDX_Colab")}')
else:
os.remove('nver')
print('Using latest version.')
def past_installation():
return os.path.exists('MDX_Colab')
def LoadMDX():
console(f'git clone {ai} MDX_Colab')
#-------------------------------------------------------
# install requirements
print('Installing dependencies will take 45 seconds...',end=' ')
gpu_info = !nvidia-smi
gpu_info = '\n'.join(gpu_info)
if gpu_info.find('failed') >= 0:
svmem = psutil.virtual_memory()
gpu_runtime = False
with h():
console('pip3 install onnxruntime==1.14.1')
else:
gpu_runtime = True
with h():
console('pip3 install onnxruntime-gpu==1.14.1')
with h():
deps = [
'pathvalidate',
'youtube-dl',
'django'
]
for dep in deps:
console('pip3 install {}'.format(dep))
# import modules
#console('pip3 install torch==1.13.1')
console('pip3 install soundfile==0.12.1')
console('pip3 install librosa==0.9.1')
from pathvalidate import sanitize_filename
print('done')
if not gpu_runtime:
print(f'GPU runtime is disabled. You have {get_size(svmem.total)} RAM.\nProcessing will be incredibly slow. 😈')
elif gpu_info.find('Tesla T4') >= 0:
print('You got a Tesla T4 GPU. (speeds are around 10-25 it/s)')
elif gpu_info.find('Tesla P4') >= 0:
print('You got a Tesla P4 GPU. (speeds are around 8-22 it/s)')
elif gpu_info.find('Tesla K80') >= 0:
print('You got a Tesla K80 GPU. (This is the common gpu, speeds are around 2-10 it/s)')
elif gpu_info.find('Tesla P100') >= 0:
print('You got a Tesla P100 GPU. (This is the Second to the fastest gpu, speeds are around 15-42 it/s)')
else:
if gpu_runtime:
print('You got an unknown GPU. Please report the GPU you got!')
!nvidia-smi
#console('pip3 install demucs')
#-------------------------------------------------------
# Scripting
mount(mount_to_drive)
toPath('gdrive' if mount_to_drive else 'local')
#check for MDX existence
if not past_installation():
print('First time installation will take around 3-6 minutes.\nThis requires around 2-3 GB Free Gdrive space.\nPlease try not to interup installation process!!')
print('Downloading AI...',end=' ')
with h():
LoadMDX()
os.chdir('MDX_Colab')
print('done')
print('Downloading models...',end=' ')
with h():
#getDemucs('model/')
getONNX()
if os.path.isfile('onnx_list'):
os.remove('onnx_list')
print('done')
else:
os.chdir('MDX_Colab')
update()
################
#outro
print('Success!')
#@markdown ##Click this to import a ZIP of AUDIO FILES (for isolation.)
#@markdown Or you can use the cell below this to upload files directly instead (which is more convenient) <br> <br>
#@markdown Link the URL path to the audio files (Mega, Drive, etc.) and start the code
url = 'INSERTURLHERE' #@param {type:"string"}
import subprocess
import os
import shutil
from urllib.parse import urlparse, parse_qs
from google.colab import output
from google.colab import drive
mount_to_drive = True
mount_path = '/content/drive/MyDrive'
def mount(gdrive=False):
if gdrive:
if not os.path.exists("/content/drive/MyDrive"):
try:
drive.mount("/content/drive", force_remount=True)
except:
drive._mount("/content/drive", force_remount=True)
else:
pass
mount(mount_to_drive)
def check_package_installed(package_name):
command = f"pip show {package_name}"
result = subprocess.run(command.split(), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return result.returncode == 0
def install_package(package_name):
command = f"pip install {package_name} --quiet"
subprocess.run(command.split(), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
if not check_package_installed("mega.py"):
install_package("mega.py")
from mega import Mega
import os
import shutil
from urllib.parse import urlparse, parse_qs
import urllib.parse
!rm -rf /content/unzips/
!rm -rf /content/zips/
!mkdir /content/unzips
!mkdir /content/zips
def sanitize_directory(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
if filename == ".DS_Store" or filename.startswith("._"):
os.remove(file_path)
elif os.path.isdir(file_path):
sanitize_directory(file_path)
audio_zip = urlparse(url).path.split('/')[-2] + '.zip'
audio_zip_path = '/content/zips/' + audio_zip
if url != '':
if "drive.google.com" in url:
!gdown $url --fuzzy -O "$audio_zip_path"
elif "mega.nz" in url:
m = Mega()
m.download_url(url, '/content/zips')
else:
!wget "$url" -O "$audio_zip_path"
for filename in os.listdir("/content/zips"):
if filename.endswith(".zip"):
zip_file = os.path.join("/content/zips", filename)
shutil.unpack_archive(zip_file, "/content/unzips", 'zip')
sanitize_directory("/content/unzips")
# Copy the unzipped audio files to the /content/drive/MyDrive/MDX_Colab/tracks folder
!mkdir -p /content/drive/MyDrive/MDX_Colab/tracks
for filename in os.listdir("/content/unzips"):
if filename.endswith((".wav", ".mp3")):
audio_file = os.path.join("/content/unzips", filename)
destination_file = os.path.join("/content/drive/MyDrive/MDX_Colab/tracks", filename)
shutil.copy2(audio_file, destination_file)
if os.path.exists(destination_file):
print(f"Copy successful: {destination_file}")
else:
print(f"Copy failed: {audio_file}")
!rm -r /content/unzips/
!rm -r /content/zips/
"""##Audio Isolation"""
#@markdown #Upload your files directly to UVR
#@markdown Run this cell to upload your vocal files that you want to use, (or zip files containing audio), to your Colab. <br>
#@markdown Alternatively, you can upload from the colab files panel, but this should be more convenient. This method may not work on iOS.
from google.colab import files
from IPython.display import display, Javascript
import os
import shutil
import zipfile
import ipywidgets as widgets
# Create the target directory if it doesn't exist
target_dir = '/content/drive/MyDrive/MDX_Colab/tracks'
if not os.path.exists(target_dir):
os.makedirs(target_dir)
uploaded = files.upload()
for fn in uploaded.keys():
# Check if the uploaded file is a zip file
if fn.endswith('.zip'):
# Write the uploaded zip file to the target directory
zip_path = os.path.join(target_dir, fn)
with open(zip_path, 'wb') as f:
f.write(uploaded[fn])
unzip_dir = os.path.join(target_dir, fn[:-4]) # Remove the .zip extension from the folder name
# Extract the zip file
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(unzip_dir)
# Delete the zip file
if os.path.exists(zip_path):
os.remove(zip_path)
print('Zip file "{name}" extracted and removed. Files are in: {folder}'.format(name=fn, folder=unzip_dir))
# Display copy path buttons for each extracted file
for extracted_file in os.listdir(unzip_dir):
extracted_file_path = os.path.join(unzip_dir, extracted_file)
extracted_file_length = os.path.getsize(extracted_file_path)
extracted_file_label = widgets.HTML(
value='Extracted file "{name}" with length {length} bytes'.format(name=extracted_file, length=extracted_file_length)
)
display(extracted_file_label)
extracted_file_path_text = widgets.HTML(
value='File saved to: <a href="{}" target="_blank">{}</a>'.format(extracted_file_path, extracted_file_path)
)
extracted_copy_button = widgets.Button(description='Copy')
extracted_copy_button_file_path = extracted_file_path # Make a local copy of the file path
def copy_to_clipboard(b):
js_code = '''
const el = document.createElement('textarea');
el.value = "{path}";
el.setAttribute('readonly', '');
el.style.position = 'absolute';
el.style.left = '-9999px';
document.body.appendChild(el);
el.select();
document.execCommand('copy');
document.body.removeChild(el);
'''
display(Javascript(js_code.format(path=extracted_copy_button_file_path)))
extracted_copy_button.on_click(copy_to_clipboard)
display(widgets.HBox([extracted_file_path_text, extracted_copy_button]))
continue
# For non-zip files
# Save the file to the target directory
file_path = os.path.join(target_dir, fn)
with open(file_path, 'wb') as f:
f.write(uploaded[fn])
file_length = len(uploaded[fn])
file_label = widgets.HTML(
value='User uploaded file "{name}" with length {length} bytes'.format(name=fn, length=file_length)
)
display(file_label)
# Check if the uploaded file is a .pth or .index file
if fn.endswith('.pth') or fn.endswith('.index'):
warning_text = widgets.HTML(
value='<b style="color: red;">Warning:</b> You are uploading a model file in the wrong place. Please ensure it is uploaded to the correct location.'
)
display(warning_text)
# Create a clickable path with copy button
file_path_text = widgets.HTML(
value='File saved to: <a href="{}" target="_blank">{}</a>'.format(file_path, file_path)
)
copy_button = widgets.Button(description='Copy')
copy_button_file_path = file_path # Make a local copy of the file path
def copy_to_clipboard(b):
js_code = '''
const el = document.createElement('textarea');
el.value = "{path}";
el.setAttribute('readonly', '');
el.style.position = 'absolute';
el.style.left = '-9999px';
document.body.appendChild(el);
el.select();
document.execCommand('copy');
document.body.removeChild(el);
'''
display(Javascript(js_code.format(path=copy_button_file_path)))
copy_button.on_click(copy_to_clipboard)
display(widgets.HBox([file_path_text, copy_button]))
# Remove the original uploaded files from /content/
for fn in uploaded.keys():
if os.path.exists(os.path.join("/content/", fn)):
os.remove(os.path.join("/content/", fn))
#@markdown ### Print a list of tracks
for i in glob.glob('tracks/*'):
print(os.path.basename(i))
if not 'initialised' in globals():
raise NameError('Please run the first cell first!! #scrollTo=H_cTbwhVq4K6')
#import all models metadata
import json
with open('model_data.json', 'r') as f:
model_data = json.load(f)
# Modifiable variables
tracks_path = 'tracks/'
separated_path = 'separated/'
#@markdown ### Input track
#@markdown Enter any link/Filename (Upload your songs in tracks folder)
track = "Butterfly.wav" #@param {type:"string"}
#@markdown ---
#@markdown ### Models
ONNX = "MDX-UVR Ins Model Full Band 498 (HQ_2)" #@param ["off", "Karokee", "Karokee_AGGR", "Karokee 2", "baseline", "MDX-UVR Ins Model 415", "MDX-UVR Ins Model 418", "MDX-UVR Ins Model 464", "MDX-UVR Ins Model 496 - inst main-MDX 2.1", "Kim ft other instrumental model", "MDX-UVR Vocal Model 427", "MDX-UVR-Kim Vocal Model (old)", "MDX-UVR Ins Model Full Band 292", "MDX-UVR Ins Model Full Band 403", "MDX-UVR Ins Model Full Band 450 (HQ_1)", "MDX-UVR Ins Model Full Band 498 (HQ_2)"]
Demucs = 'off'#@param ["off","demucs_extra"]
#@markdown ---
#@markdown ### Parameters
denoise = False #@param {type:"boolean"}
normalise = True #@param {type:"boolean"}
#getting values from model_data.json related to ONNX var (model folder name)
amplitude_compensation = model_data[ONNX]["compensate"]
dim_f = model_data[ONNX]["mdx_dim_f_set"]
dim_t = model_data[ONNX]["mdx_dim_t_set"]
n_fft = model_data[ONNX]["mdx_n_fft_scale_set"]
mixing_algorithm = 'max_mag' #@param ["default","min_mag","max_mag"]
chunks = 55 #@param {type:"slider", min:1, max:55, step:1}
shifts = 10 #@param {type:"slider", min:0, max:10, step:0.1}
##validate values
track = track if 'http' in track else tracks_path+track
normalise = '--normalise' if normalise else ''
denoise = '--denoise' if denoise else ''
if ONNX == 'off':
pass
else:
ONNX = 'onnx/'+ONNX
if Demucs == 'off':
pass
else:
Demucs = 'model/'+Demucs+'.th'
#@markdown ---
#@markdown ### Stems
bass = False #@param {type:"boolean"}
drums = False #@param {type:"boolean"}
others = False #@param {type:"boolean"}
vocals = True #@param {type:"boolean"}
#@markdown ---
#@markdown ### Invert stems to mixture
invert_bass = False #@param {type:"boolean"}
invert_drums = False #@param {type:"boolean"}
invert_others = False #@param {type:"boolean"}
invert_vocals = True #@param {type:"boolean"}
invert_stems = []
stems = []
if bass:
stems.append('b')
if drums:
stems.append('d')
if others:
stems.append('o')
if vocals:
stems.append('v')
invert_stems = []
if invert_bass:
invert_stems.append('b')
if invert_drums:
invert_stems.append('d')
if invert_others:
invert_stems.append('o')
if invert_vocals:
invert_stems.append('v')
margin = 44100
###
# incompatibilities
###
console(f"python main.py --n_fft {n_fft} --dim_f {dim_f} --dim_t {dim_t} --margin {margin} -i \"{track}\" --mixing {mixing_algorithm} --onnx \"{ONNX}\" --model {Demucs} --shifts {round(shifts)} --stems {''.join(stems)} --invert {''.join(invert_stems)} --chunks {chunks} --compensate {amplitude_compensation} {normalise} {denoise}")
"""<sup>Models provided are from [Kuielab](https://github.com/kuielab/mdx-net-submission/), [UVR](https://github.com/Anjok07/ultimatevocalremovergui/) and [Kim](https://github.com/KimberleyJensen/) <br> (you can support UVR [here](https://www.buymeacoffee.com/uvr5/vip-model-download-instructions) and [here](https://boosty.to/uvr)).</sup></br>
<sup>Original UVR notebook by [Audio Hacker](https://www.youtube.com/channel/UC0NiSV1jLMH-9E09wiDVFYw/), modified by Audio Separation community & then kalomaze (for RVC colab).</sup></br>
<sup>Big thanks to the [Audio Separation Discord](https://discord.gg/zeYU2Wzbgj) for helping me implement this in the colab.</sup></br>
##**UVR Colab Settings explanation**<br>
The defaults already provided are generally recommended. However, if you would like to try tweaking them, here's an explanation:
*Mixing algorithm* - max_mag - is generally for vocals (gives the most residues in instrumentals), min_mag - for instrumentals (the most aggresive) though "min_mag solve some un-wanted vocal soundings, but instrumental [is] more muffled and less detailed". Check out also "default" as it's in between both - a.k.a. average (it's also required for Demucs enabled which works only for vocal models).<br>
*Chunks* - Set it to 55 or 40 (less aggressive) to alleviate some occasional instrument dissapearing.
Set 1 for the best clarity. It works for at least instrumental model (4:15 track, at least for Tesla T4 (shown at the top) generally better quality, but some instruments tend to disappear more using 1 than 10. For Demucs enabled and/or vocal model it can be set to 10 if your track is below 5:00 minutes. The more chunks, the faster separation up to ~40. For 4:15 track, 72 is max supported till memory allocation error shows up (disabled chunks returns error too). <br>
*Shifts* - can be set max to 10, but it only slightly increases SDR, while processing time is 1.7x longer for each shift and it gives similar result to shifts 5.
*Normalization* - "normalizes all input at first and then changes the wave peak back to original. This makes the separation process better, also less noise" (e.g. if you have to noisy hihats or big amplitude compensation - disable it).
<br>
*Demucs* enabled works correctly with mixing algorithm set to default and only with vocal models (Kim and 427). It's also the only option to get rid of noise of MDX models. Normalization enabled is necessary (but that cnfiguration has slightly more vocal residues than instrumental model). Decrease chunks to 40 if you have ONNXRuntimeError with Demucs on (it requires lower chunks).
<br>
##**Recommended models**<br>
For vocals (by raw SDR output, not factoring in manual cleanup):
- Kim vocal 2 (less instrumental residues in vocal stem)
- Kim vocal 1
<br>or alternatively
- 427
- 406
For best lead vocals:
- Karaokee 2
For best backing vocals:
- [HP_KAROKEE-MSB2-3BAND-3090](https://colab.research.google.com/drive/16Q44VBJiIrXOgTINztVDVeb0XKhLKHwl?usp=sharing)
It's rather inconvenient that the VR Architecture models aren't here and have to be run through the above colab, but they can't coexist in the same colab as of right now. I will attempting a better solution in the future.
""" |