File size: 2,098 Bytes
eadad30
 
d2d4f8d
50af3dc
eadad30
 
 
 
 
 
 
1f13a11
eadad30
 
d2d4f8d
eadad30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import streamlit as st
from typing import Generator
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

st.set_page_config(
    page_icon="πŸ’¬",
    page_title="Chat App",
    layout="wide",
)

model_name = "JuliaTsk/SuccinctLabs-chat-finetuned"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", low_cpu_mem_usage=True)
st.title("ChatGPT-like clone 🎈")


def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
    for chunk in chat_completion:
        if chunk.choices[0].delta.content:
            yield chunk.choices[0].delta.content


left, right = st.columns([2, 6], vertical_alignment="top")
max_tokens_range = 32768
max_tokens = left.slider(
    label="Max Tokens:",
    min_value=128,
    max_value=max_tokens_range,
    # Default value or max allowed if less
    value=min(1024, max_tokens_range),
    step=128,
    help=f"Adjust the maximum number of tokens (words) for the model's response."
)
temperature = left.slider(
    label="Temperature:",
    min_value=0.0,
    max_value=1.0,
    value=0.7,
    step=0.01,
    help=f"Controls randomness: a low value means less random responses."
)

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    avatar = 'πŸ€–' if message["role"] == "assistant" else 'πŸ‘¨β€πŸ’»'
    with right.chat_message(message["role"], avatar=avatar):
        right.markdown(message["content"])


prompt = st.chat_input("Say something")
if prompt:
    with right.chat_message("user", avatar='πŸ‘¨β€πŸ’»'):
        right.markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})
    with right.chat_message("assistant"):
        inputs = tokenizer(prompt, return_tensors="pt")
        outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1)
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

st.session_state.messages.append({"role": "assistant", "content": generated_text})