Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from sklearn.metrics.pairwise import cosine_similarity | |
import torch | |
import re | |
from datasets import load_dataset | |
dataset = load_dataset("JuliaWolken/chunks.csv", split="train") | |
chunks_df = dataset.to_pandas() | |
model = SentenceTransformer('JuliaWolken/fine_tuned_model_with_triplets') | |
original_chunks = chunks_df['Chunk'].tolist() | |
chunk_embeddings = model.encode(original_chunks, convert_to_tensor=True) | |
tokenizer = AutoTokenizer.from_pretrained('DiTy/cross-encoder-russian-msmarco') | |
cross_encoder_model = AutoModelForSequenceClassification.from_pretrained('DiTy/cross-encoder-russian-msmarco') | |
def embed_texts(texts): | |
return model.encode(texts, convert_to_tensor=True) | |
def find_relevant_chunks(question_embedding, top_k=5): | |
cosine_similarities = cosine_similarity(question_embedding.cpu().numpy(), chunk_embeddings.cpu().numpy()).flatten() | |
num_candidates = top_k * 10 # Adjust to get more candidates for re-ranking | |
top_indices = cosine_similarities.argsort()[-num_candidates:][::-1] | |
return [original_chunks[i] for i in top_indices] | |
def re_rank(question, candidate_chunks): | |
inputs = tokenizer([question] * len(candidate_chunks), candidate_chunks, return_tensors='pt', padding=True, truncation=True, max_length=512) | |
with torch.no_grad(): | |
scores = cross_encoder_model(**inputs).logits.squeeze() | |
ranked_indices = scores.argsort(descending=True) | |
return [candidate_chunks[i] for i in ranked_indices] | |
def find_relevant_chunks_with_reranking(question, top_k=5): | |
question_embedding = embed_texts([question]) | |
candidate_chunks = find_relevant_chunks(question_embedding, top_k=top_k) | |
ranked_chunks = re_rank(question, candidate_chunks) if len(candidate_chunks) > 1 else candidate_chunks | |
return ranked_chunks[:top_k] | |
def answer_question(question): | |
if not question or len(question) < 10: | |
return "Пожалуйста, задайте вопрос. Количество символов должно превышать 10." | |
if not re.search(r'[а-яА-Я]', question): | |
return "Простите, на этом языке я пока не говорю. Попробуем еще раз?" | |
top_chunks = find_relevant_chunks_with_reranking(question, top_k=5) | |
if not top_chunks: | |
return "Ничего не нашлось. Я только учусь, сформулируйте вопрос иначе, пожалуйста" | |
return "\n\n".join([f"Answer {i+1}: {chunk}" for i, chunk in enumerate(top_chunks)]) | |
# Set up Gradio interface | |
iface = gr.Interface( | |
fn=answer_question, | |
inputs="text", | |
outputs="text", | |
title="Question Answering Model", | |
description="Здравствуйте! Задайте мне вопрос на русском о работе пунктов выдачи WB, и я постараюсь найти самые лучшие ответы." | |
) | |
# Launch the Gradio interface with shareable link | |
iface.launch() | |