JulsdL commited on
Commit
85ee7cf
Β·
unverified Β·
2 Parent(s): e3c5c37 19e42bb

Merge pull request #3 from JulsdL/Flashcards_implementation

Browse files
.chainlit/config.toml DELETED
@@ -1,109 +0,0 @@
1
- [project]
2
- # Whether to enable telemetry (default: true). No personal data is collected.
3
- enable_telemetry = true
4
-
5
-
6
- # List of environment variables to be provided by each user to use the app.
7
- user_env = []
8
-
9
- # Duration (in seconds) during which the session is saved when the connection is lost
10
- session_timeout = 3600
11
-
12
- # Enable third parties caching (e.g LangChain cache)
13
- cache = false
14
-
15
- # Authorized origins
16
- allow_origins = ["*"]
17
-
18
- # Follow symlink for asset mount (see https://github.com/Chainlit/chainlit/issues/317)
19
- # follow_symlink = false
20
-
21
- [features]
22
- # Show the prompt playground
23
- prompt_playground = true
24
-
25
- # Process and display HTML in messages. This can be a security risk (see https://stackoverflow.com/questions/19603097/why-is-it-dangerous-to-render-user-generated-html-or-javascript)
26
- unsafe_allow_html = false
27
-
28
- # Process and display mathematical expressions. This can clash with "$" characters in messages.
29
- latex = false
30
-
31
- # Automatically tag threads with the current chat profile (if a chat profile is used)
32
- auto_tag_thread = true
33
-
34
- # Authorize users to upload files with messages
35
- [features.multi_modal]
36
- enabled = true
37
- accept = ["*/*"]
38
- max_files = 20
39
- max_size_mb = 500
40
-
41
- # Allows user to use speech to text
42
- [features.speech_to_text]
43
- enabled = false
44
- # See all languages here https://github.com/JamesBrill/react-speech-recognition/blob/HEAD/docs/API.md#language-string
45
- # language = "en-US"
46
-
47
- [UI]
48
- # Name of the app and chatbot.
49
- name = "Chatbot"
50
-
51
- # Show the readme while the thread is empty.
52
- show_readme_as_default = true
53
-
54
- # Description of the app and chatbot. This is used for HTML tags.
55
- # description = ""
56
-
57
- # Large size content are by default collapsed for a cleaner ui
58
- default_collapse_content = true
59
-
60
- # The default value for the expand messages settings.
61
- default_expand_messages = false
62
-
63
- # Hide the chain of thought details from the user in the UI.
64
- hide_cot = false
65
-
66
- # Link to your github repo. This will add a github button in the UI's header.
67
- # github = ""
68
-
69
- # Specify a CSS file that can be used to customize the user interface.
70
- # The CSS file can be served from the public directory or via an external link.
71
- # custom_css = "/public/test.css"
72
-
73
- # Specify a Javascript file that can be used to customize the user interface.
74
- # The Javascript file can be served from the public directory.
75
- # custom_js = "/public/test.js"
76
-
77
- # Specify a custom font url.
78
- # custom_font = "https://fonts.googleapis.com/css2?family=Inter:wght@400;500;700&display=swap"
79
-
80
- # Specify a custom build directory for the frontend.
81
- # This can be used to customize the frontend code.
82
- # Be careful: If this is a relative path, it should not start with a slash.
83
- # custom_build = "./public/build"
84
-
85
- # Override default MUI light theme. (Check theme.ts)
86
- [UI.theme]
87
- #font_family = "Inter, sans-serif"
88
- [UI.theme.light]
89
- #background = "#FAFAFA"
90
- #paper = "#FFFFFF"
91
-
92
- [UI.theme.light.primary]
93
- #main = "#F80061"
94
- #dark = "#980039"
95
- #light = "#FFE7EB"
96
-
97
- # Override default MUI dark theme. (Check theme.ts)
98
- [UI.theme.dark]
99
- #background = "#FAFAFA"
100
- #paper = "#FFFFFF"
101
-
102
- [UI.theme.dark.primary]
103
- #main = "#F80061"
104
- #dark = "#980039"
105
- #light = "#FFE7EB"
106
-
107
-
108
- [meta]
109
- generated_by = "1.0.506"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.chainlit/translations/en-US.json DELETED
@@ -1,231 +0,0 @@
1
- {
2
- "components": {
3
- "atoms": {
4
- "buttons": {
5
- "userButton": {
6
- "menu": {
7
- "settings": "Settings",
8
- "settingsKey": "S",
9
- "APIKeys": "API Keys",
10
- "logout": "Logout"
11
- }
12
- }
13
- }
14
- },
15
- "molecules": {
16
- "newChatButton": {
17
- "newChat": "New Chat"
18
- },
19
- "tasklist": {
20
- "TaskList": {
21
- "title": "\ud83d\uddd2\ufe0f Task List",
22
- "loading": "Loading...",
23
- "error": "An error occured"
24
- }
25
- },
26
- "attachments": {
27
- "cancelUpload": "Cancel upload",
28
- "removeAttachment": "Remove attachment"
29
- },
30
- "newChatDialog": {
31
- "createNewChat": "Create new chat?",
32
- "clearChat": "This will clear the current messages and start a new chat.",
33
- "cancel": "Cancel",
34
- "confirm": "Confirm"
35
- },
36
- "settingsModal": {
37
- "settings": "Settings",
38
- "expandMessages": "Expand Messages",
39
- "hideChainOfThought": "Hide Chain of Thought",
40
- "darkMode": "Dark Mode"
41
- },
42
- "detailsButton": {
43
- "using": "Using",
44
- "running": "Running",
45
- "took_one": "Took {{count}} step",
46
- "took_other": "Took {{count}} steps"
47
- },
48
- "auth": {
49
- "authLogin": {
50
- "title": "Login to access the app.",
51
- "form": {
52
- "email": "Email address",
53
- "password": "Password",
54
- "noAccount": "Don't have an account?",
55
- "alreadyHaveAccount": "Already have an account?",
56
- "signup": "Sign Up",
57
- "signin": "Sign In",
58
- "or": "OR",
59
- "continue": "Continue",
60
- "forgotPassword": "Forgot password?",
61
- "passwordMustContain": "Your password must contain:",
62
- "emailRequired": "email is a required field",
63
- "passwordRequired": "password is a required field"
64
- },
65
- "error": {
66
- "default": "Unable to sign in.",
67
- "signin": "Try signing in with a different account.",
68
- "oauthsignin": "Try signing in with a different account.",
69
- "redirect_uri_mismatch": "The redirect URI is not matching the oauth app configuration.",
70
- "oauthcallbackerror": "Try signing in with a different account.",
71
- "oauthcreateaccount": "Try signing in with a different account.",
72
- "emailcreateaccount": "Try signing in with a different account.",
73
- "callback": "Try signing in with a different account.",
74
- "oauthaccountnotlinked": "To confirm your identity, sign in with the same account you used originally.",
75
- "emailsignin": "The e-mail could not be sent.",
76
- "emailverify": "Please verify your email, a new email has been sent.",
77
- "credentialssignin": "Sign in failed. Check the details you provided are correct.",
78
- "sessionrequired": "Please sign in to access this page."
79
- }
80
- },
81
- "authVerifyEmail": {
82
- "almostThere": "You're almost there! We've sent an email to ",
83
- "verifyEmailLink": "Please click on the link in that email to complete your signup.",
84
- "didNotReceive": "Can't find the email?",
85
- "resendEmail": "Resend email",
86
- "goBack": "Go Back",
87
- "emailSent": "Email sent successfully.",
88
- "verifyEmail": "Verify your email address"
89
- },
90
- "providerButton": {
91
- "continue": "Continue with {{provider}}",
92
- "signup": "Sign up with {{provider}}"
93
- },
94
- "authResetPassword": {
95
- "newPasswordRequired": "New password is a required field",
96
- "passwordsMustMatch": "Passwords must match",
97
- "confirmPasswordRequired": "Confirm password is a required field",
98
- "newPassword": "New password",
99
- "confirmPassword": "Confirm password",
100
- "resetPassword": "Reset Password"
101
- },
102
- "authForgotPassword": {
103
- "email": "Email address",
104
- "emailRequired": "email is a required field",
105
- "emailSent": "Please check the email address {{email}} for instructions to reset your password.",
106
- "enterEmail": "Enter your email address and we will send you instructions to reset your password.",
107
- "resendEmail": "Resend email",
108
- "continue": "Continue",
109
- "goBack": "Go Back"
110
- }
111
- }
112
- },
113
- "organisms": {
114
- "chat": {
115
- "history": {
116
- "index": {
117
- "showHistory": "Show history",
118
- "lastInputs": "Last Inputs",
119
- "noInputs": "Such empty...",
120
- "loading": "Loading..."
121
- }
122
- },
123
- "inputBox": {
124
- "input": {
125
- "placeholder": "Type your message here..."
126
- },
127
- "speechButton": {
128
- "start": "Start recording",
129
- "stop": "Stop recording"
130
- },
131
- "SubmitButton": {
132
- "sendMessage": "Send message",
133
- "stopTask": "Stop Task"
134
- },
135
- "UploadButton": {
136
- "attachFiles": "Attach files"
137
- },
138
- "waterMark": {
139
- "text": "Built with"
140
- }
141
- },
142
- "Messages": {
143
- "index": {
144
- "running": "Running",
145
- "executedSuccessfully": "executed successfully",
146
- "failed": "failed",
147
- "feedbackUpdated": "Feedback updated",
148
- "updating": "Updating"
149
- }
150
- },
151
- "dropScreen": {
152
- "dropYourFilesHere": "Drop your files here"
153
- },
154
- "index": {
155
- "failedToUpload": "Failed to upload",
156
- "cancelledUploadOf": "Cancelled upload of",
157
- "couldNotReachServer": "Could not reach the server",
158
- "continuingChat": "Continuing previous chat"
159
- },
160
- "settings": {
161
- "settingsPanel": "Settings panel",
162
- "reset": "Reset",
163
- "cancel": "Cancel",
164
- "confirm": "Confirm"
165
- }
166
- },
167
- "threadHistory": {
168
- "sidebar": {
169
- "filters": {
170
- "FeedbackSelect": {
171
- "feedbackAll": "Feedback: All",
172
- "feedbackPositive": "Feedback: Positive",
173
- "feedbackNegative": "Feedback: Negative"
174
- },
175
- "SearchBar": {
176
- "search": "Search"
177
- }
178
- },
179
- "DeleteThreadButton": {
180
- "confirmMessage": "This will delete the thread as well as it's messages and elements.",
181
- "cancel": "Cancel",
182
- "confirm": "Confirm",
183
- "deletingChat": "Deleting chat",
184
- "chatDeleted": "Chat deleted"
185
- },
186
- "index": {
187
- "pastChats": "Past Chats"
188
- },
189
- "ThreadList": {
190
- "empty": "Empty...",
191
- "today": "Today",
192
- "yesterday": "Yesterday",
193
- "previous7days": "Previous 7 days",
194
- "previous30days": "Previous 30 days"
195
- },
196
- "TriggerButton": {
197
- "closeSidebar": "Close sidebar",
198
- "openSidebar": "Open sidebar"
199
- }
200
- },
201
- "Thread": {
202
- "backToChat": "Go back to chat",
203
- "chatCreatedOn": "This chat was created on"
204
- }
205
- },
206
- "header": {
207
- "chat": "Chat",
208
- "readme": "Readme"
209
- }
210
- }
211
- },
212
- "hooks": {
213
- "useLLMProviders": {
214
- "failedToFetchProviders": "Failed to fetch providers:"
215
- }
216
- },
217
- "pages": {
218
- "Design": {},
219
- "Env": {
220
- "savedSuccessfully": "Saved successfully",
221
- "requiredApiKeys": "Required API Keys",
222
- "requiredApiKeysInfo": "To use this app, the following API keys are required. The keys are stored on your device's local storage."
223
- },
224
- "Page": {
225
- "notPartOfProject": "You are not part of this project."
226
- },
227
- "ResumeButton": {
228
- "resumeChat": "Resume Chat"
229
- }
230
- }
231
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.gitignore CHANGED
@@ -82,10 +82,16 @@ target/
82
  profile_default/
83
  ipython_config.py
84
 
 
 
 
 
 
 
85
  # pyenv
86
  # For a library or package, you might want to ignore these files since the code is
87
  # intended to run in multiple environments; otherwise, check them in:
88
- # .python-version
89
 
90
  # pipenv
91
  # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
 
82
  profile_default/
83
  ipython_config.py
84
 
85
+ # FLashcard directory
86
+ flashcards/
87
+
88
+ # .chainlit directory
89
+ .chainlit/
90
+
91
  # pyenv
92
  # For a library or package, you might want to ignore these files since the code is
93
  # intended to run in multiple environments; otherwise, check them in:
94
+ .python-version
95
 
96
  # pipenv
97
  # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
README.md CHANGED
@@ -1,8 +1,8 @@
1
- # AIMS-Tutor
2
 
3
  # RAG Application for QA in Jupyter Notebook
4
 
5
- AIMS-Tutor is designed to provide question-answering capabilities in a Jupyter Notebook using the Retrieval Augmented Generation (RAG) model. It's built on top of the LangChain and Chainlit platforms, and it uses the OpenAI API for the chat model.
6
 
7
  ## Features
8
 
@@ -28,7 +28,7 @@ OPENAI_API_KEY=your-key-here
28
  4. Run the application using the following command:
29
 
30
  ```bash
31
- chainlit run aims_tutor/app.py
32
  ```
33
 
34
  ## Usage
 
1
+ # AI-Notebook-Tutor
2
 
3
  # RAG Application for QA in Jupyter Notebook
4
 
5
+ AI-Notebook-Tutor is designed to provide question-answering capabilities in a Jupyter Notebook using the Retrieval Augmented Generation (RAG) model. It's built on top of the LangChain and Chainlit platforms, and it uses the OpenAI API for the chat model.
6
 
7
  ## Features
8
 
 
28
  4. Run the application using the following command:
29
 
30
  ```bash
31
+ chainlit run notebook_tutor/app.py
32
  ```
33
 
34
  ## Usage
flashcards_cca7854c-91c2-47d5-872f-46132739ace0.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Front,Back
2
+ What command is used to clone a GitHub repository in a notebook?,!git clone https://github.com/arcee-ai/DALM
3
+ How do you install or upgrade a Python package in a notebook?,!pip install --upgrade -q -e .
4
+ Which command installs the 'langchain' and 'langchain-community' libraries?,!pip install -qU langchain langchain-core langchain-community sentence_transformers
5
+ What is the command to install 'pymupdf' and 'faiss-cpu'?,!pip install -qU pymupdf faiss-cpu
6
+ How do you import the Pandas library in Python?,import pandas as pd
7
+ Which library provides the 'HuggingFaceEmbeddings' class?,from langchain_community.embeddings import HuggingFaceEmbeddings
8
+ How do you import the 'FAISS' vector store from the 'langchain_community' library?,from langchain_community.vectorstores import FAISS
9
+ What is the import statement for reading directories using the 'Llama Index' library?,from llama_index.core import SimpleDirectoryReader
10
+ Which import statement is used for parsing nodes in the 'Llama Index' library?,from llama_index.core.node_parser import SimpleNodeParser
11
+ How do you import the 'MetadataMode' schema from the 'Llama Index' library?,from llama_index.core.schema import MetadataMode
main.py DELETED
@@ -1,118 +0,0 @@
1
- import os
2
- from operator import itemgetter
3
-
4
- import chainlit as cl
5
- import tiktoken
6
- from dotenv import load_dotenv
7
-
8
-
9
- from langchain.text_splitter import RecursiveCharacterTextSplitter
10
- from langchain.retrievers import MultiQueryRetriever
11
- from langchain_core.prompts import ChatPromptTemplate
12
- from langchain_core.runnables import RunnablePassthrough
13
- from langchain_community.document_loaders import PyMuPDFLoader, PythonLoader, NotebookLoader
14
- from langchain_community.vectorstores import Qdrant
15
- from langchain_openai import ChatOpenAI
16
- from langchain_openai.embeddings import OpenAIEmbeddings
17
-
18
- # Load environment variables
19
- load_dotenv()
20
-
21
- # Configuration for OpenAI
22
- OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
23
- openai_chat_model = ChatOpenAI(model="gpt-4-turbo", temperature=0.1)
24
-
25
- # Define the RAG prompt
26
- RAG_PROMPT = """
27
- CONTEXT:
28
- {context}
29
-
30
- QUERY:
31
- {question}
32
-
33
- Answer the query in a pretty format if the context is related to it; otherwise, answer: 'Sorry, I can't answer.'
34
- """
35
- rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
36
-
37
-
38
- # ChainLit setup for chat interaction
39
- @cl.on_chat_start
40
- async def start_chat():
41
- settings = {
42
- "model": "gpt-3.5-turbo",
43
- "temperature": 0,
44
- "top_p": 1,
45
- "frequency_penalty": 0,
46
- "presence_penalty": 0,
47
- }
48
- cl.user_session.set("settings", settings)
49
-
50
- # Display a welcoming message with instructions
51
- welcome_message = "Welcome to the AIMS-Tutor! Please upload a Jupyter notebook (.ipynb and max. 5mb) to start."
52
- await cl.Message(content=welcome_message).send()
53
-
54
- # Wait for the user to upload a file
55
- files = None
56
- while files is None:
57
- files = await cl.AskFileMessage(
58
- content="Please upload a Jupyter notebook (.ipynb, max. 5mb):",
59
- accept={"application/x-ipynb+json": [".ipynb"]},
60
- max_size_mb=5
61
- ).send()
62
-
63
- file = files[0] # Get the first file
64
-
65
- if file:
66
- # Load the Jupyter notebook
67
- notebook_path = file.path # Extract the path from the AskFileResponse object
68
-
69
- loader = NotebookLoader(
70
- notebook_path,
71
- include_outputs=False,
72
- max_output_length=20,
73
- remove_newline=True,
74
- traceback=False
75
- )
76
- docs = loader.load()
77
- cl.user_session.set("docs", docs) # Store the docs in the user session
78
-
79
- # Initialize the retriever components after loading document
80
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50, length_function=tiktoken_len) # Initialize the text splitter
81
- split_chunks = text_splitter.split_documents(docs) # Split the documents into chunks
82
- embedding_model = OpenAIEmbeddings(model="text-embedding-3-small") # Initialize the embedding model
83
- qdrant_vectorstore = Qdrant.from_documents(split_chunks, embedding_model, location=":memory:", collection_name="Notebook") # Create a Qdrant vector store
84
- qdrant_retriever = qdrant_vectorstore.as_retriever() # Set the Qdrant vector store as a retriever
85
- multiquery_retriever = MultiQueryRetriever.from_llm(retriever=qdrant_retriever, llm=openai_chat_model, include_original=True) # Create a multi-query retriever on top of the Qdrant retriever
86
-
87
- # Store the multiquery_retriever in the user session
88
- cl.user_session.set("multiquery_retriever", multiquery_retriever)
89
-
90
-
91
- @cl.on_message
92
- async def main(message: cl.Message):
93
- # Retrieve the multi-query retriever from session
94
- multiquery_retriever = cl.user_session.get("multiquery_retriever")
95
- if not multiquery_retriever:
96
- await cl.Message(content="No document processing setup found. Please upload a Jupyter notebook first.").send()
97
- return
98
-
99
- question = message.content
100
- response = handle_query(question, multiquery_retriever) # Process the question
101
-
102
- msg = cl.Message(content=response)
103
- await msg.send()
104
-
105
- def handle_query(question, retriever):
106
- # Define the retrieval augmented query-answering chain
107
- retrieval_augmented_qa_chain = (
108
- {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
109
- | RunnablePassthrough.assign(context=itemgetter("context"))
110
- | {"response": rag_prompt | openai_chat_model, "context": itemgetter("context")}
111
- )
112
- response = retrieval_augmented_qa_chain.invoke({"question": question})
113
- return response["response"].content
114
-
115
- # Tokenization function
116
- def tiktoken_len(text):
117
- tokens = tiktoken.encoding_for_model("gpt-3.5-turbo").encode(text)
118
- return len(tokens)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{aims_tutor β†’ notebook_tutor}/__init__.py RENAMED
File without changes
aims_tutor/graph.py β†’ notebook_tutor/agents.py RENAMED
@@ -1,37 +1,24 @@
1
- from typing import Annotated, List, TypedDict
2
- from dotenv import load_dotenv
3
  from langchain_core.tools import tool
4
  from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
5
- from langchain_core.messages import AIMessage, BaseMessage
6
  from langchain.agents import AgentExecutor, create_openai_functions_agent
7
  from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
8
  from langchain_openai import ChatOpenAI
9
- from langgraph.graph import END, StateGraph
10
- import functools
11
 
12
- # Load environment variables
13
- load_dotenv()
14
 
15
  # Instantiate the language model
16
  llm = ChatOpenAI(model="gpt-4o")
17
 
18
- class RetrievalChainWrapper:
19
- def __init__(self, retrieval_chain):
20
- self.retrieval_chain = retrieval_chain
21
-
22
- def retrieve_information(
23
- self,
24
- query: Annotated[str, "query to ask the RAG tool"]
25
- ):
26
- """Use this tool to retrieve information about the provided notebook."""
27
- response = self.retrieval_chain.invoke({"question": query})
28
- return response["response"].content
29
-
30
- # Create an instance of the wrapper
31
  def get_retrieve_information_tool(retrieval_chain):
32
  wrapper_instance = RetrievalChainWrapper(retrieval_chain)
33
  return tool(wrapper_instance.retrieve_information)
34
 
 
 
 
35
  # Function to create agents
36
  def create_agent(
37
  llm: ChatOpenAI,
@@ -60,19 +47,21 @@ def create_agent(
60
  # Function to create agent nodes
61
  def agent_node(state, agent, name):
62
  result = agent.invoke(state)
63
- if 'messages' not in result: # Check if messages are present in the agent state
64
  raise ValueError(f"No messages found in agent state: {result}")
65
  new_state = {"messages": state["messages"] + [AIMessage(content=result["output"], name=name)]}
66
- if "next" in result:
67
- new_state["next"] = result["next"]
68
- if name == "QuizAgent" and "quiz_created" in state and not state["quiz_created"]:
69
  new_state["quiz_created"] = True
70
- new_state["next"] = "FINISH" # Finish the conversation after the quiz is created and wait for a new user input
71
  if name == "QAAgent":
72
  new_state["question_answered"] = True
73
- new_state["next"] = "question_answered"
74
- return new_state
75
 
 
 
 
 
76
 
77
  # Function to create the supervisor
78
  def create_team_supervisor(llm: ChatOpenAI, system_prompt, members) -> AgentExecutor:
@@ -111,65 +100,3 @@ def create_team_supervisor(llm: ChatOpenAI, system_prompt, members) -> AgentExec
111
  | llm.bind_functions(functions=[function_def], function_call="route")
112
  | JsonOutputFunctionsParser()
113
  )
114
-
115
- # Define the state for the system
116
- class AIMSState(TypedDict):
117
- messages: List[BaseMessage]
118
- next: str
119
- quiz: List[dict]
120
- quiz_created: bool
121
- question_answered: bool
122
-
123
-
124
- # Create the LangGraph chain
125
- def create_aims_chain(retrieval_chain):
126
-
127
- retrieve_information_tool = get_retrieve_information_tool(retrieval_chain)
128
-
129
- # Create QA Agent
130
- qa_agent = create_agent(
131
- llm,
132
- [retrieve_information_tool],
133
- "You are a QA assistant who answers questions about the provided notebook content.",
134
- )
135
-
136
- qa_node = functools.partial(agent_node, agent=qa_agent, name="QAAgent")
137
-
138
- # Create Quiz Agent
139
- quiz_agent = create_agent(
140
- llm,
141
- [retrieve_information_tool],
142
- "You are a quiz creator that generates quizzes based on the provided notebook content."
143
-
144
- """First, You MUST Use the retrieval_inforation_tool to gather context from the notebook to gather relevant and accurate information.
145
-
146
- Next, create a 5-question quiz based on the information you have gathered. Include the answers at the end of the quiz.
147
-
148
- Present the quiz to the user in a clear and concise manner."""
149
- )
150
-
151
- quiz_node = functools.partial(agent_node, agent=quiz_agent, name="QuizAgent")
152
-
153
- # Create Supervisor Agent
154
- supervisor_agent = create_team_supervisor(
155
- llm,
156
- "You are a supervisor tasked with managing a conversation between the following agents: QAAgent, QuizAgent. Given the user request, decide which agent should act next.",
157
- ["QAAgent", "QuizAgent"],
158
- )
159
-
160
- # Build the LangGraph
161
- aims_graph = StateGraph(AIMSState)
162
- aims_graph.add_node("QAAgent", qa_node)
163
- aims_graph.add_node("QuizAgent", quiz_node)
164
- aims_graph.add_node("supervisor", supervisor_agent)
165
-
166
- aims_graph.add_edge("QAAgent", "supervisor")
167
- aims_graph.add_edge("QuizAgent", "supervisor")
168
- aims_graph.add_conditional_edges(
169
- "supervisor",
170
- lambda x: "FINISH" if x.get("quiz_created") else ("FINISH" if x.get("question_answered") else x["next"]),
171
- {"QAAgent": "QAAgent", "QuizAgent": "QuizAgent", "WAIT": END, "FINISH": END, "question_answered": END},
172
- )
173
-
174
- aims_graph.set_entry_point("supervisor")
175
- return aims_graph.compile()
 
1
+ from typing import Annotated
 
2
  from langchain_core.tools import tool
3
  from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
4
+ from langchain_core.messages import AIMessage
5
  from langchain.agents import AgentExecutor, create_openai_functions_agent
6
  from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
7
  from langchain_openai import ChatOpenAI
8
+ from tools import create_flashcards_tool, RetrievalChainWrapper
 
9
 
 
 
10
 
11
  # Instantiate the language model
12
  llm = ChatOpenAI(model="gpt-4o")
13
 
14
+ # Function to create an instance of the retrieval tool wrapper
 
 
 
 
 
 
 
 
 
 
 
 
15
  def get_retrieve_information_tool(retrieval_chain):
16
  wrapper_instance = RetrievalChainWrapper(retrieval_chain)
17
  return tool(wrapper_instance.retrieve_information)
18
 
19
+ # Instantiate the flashcard tool
20
+ flashcard_tool = create_flashcards_tool
21
+
22
  # Function to create agents
23
  def create_agent(
24
  llm: ChatOpenAI,
 
47
  # Function to create agent nodes
48
  def agent_node(state, agent, name):
49
  result = agent.invoke(state)
50
+ if 'messages' not in result:
51
  raise ValueError(f"No messages found in agent state: {result}")
52
  new_state = {"messages": state["messages"] + [AIMessage(content=result["output"], name=name)]}
53
+
54
+ # Set the appropriate flags and next state
55
+ if name == "QuizAgent":
56
  new_state["quiz_created"] = True
57
+
58
  if name == "QAAgent":
59
  new_state["question_answered"] = True
 
 
60
 
61
+ if name == "FlashcardsAgent":
62
+ new_state["flashcards_created"] = True
63
+
64
+ return new_state
65
 
66
  # Function to create the supervisor
67
  def create_team_supervisor(llm: ChatOpenAI, system_prompt, members) -> AgentExecutor:
 
100
  | llm.bind_functions(functions=[function_def], function_call="route")
101
  | JsonOutputFunctionsParser()
102
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{aims_tutor β†’ notebook_tutor}/app.py RENAMED
@@ -1,6 +1,6 @@
1
  import os
2
  from dotenv import load_dotenv
3
- import aims_tutor.chainlit_frontend as cl_frontend
4
 
5
  # Load environment variables
6
  load_dotenv()
 
1
  import os
2
  from dotenv import load_dotenv
3
+ import notebook_tutor.chainlit_frontend as cl_frontend
4
 
5
  # Load environment variables
6
  load_dotenv()
{aims_tutor β†’ notebook_tutor}/chainlit_frontend.py RENAMED
@@ -1,30 +1,38 @@
 
 
1
  import chainlit as cl
2
  from dotenv import load_dotenv
3
  from document_processing import DocumentManager
4
  from retrieval import RetrievalManager
5
  from langchain_core.messages import AIMessage, HumanMessage
6
- from graph import create_aims_chain, AIMSState
 
7
 
8
  # Load environment variables
9
  load_dotenv()
10
 
 
 
 
 
 
11
  @cl.on_chat_start
12
  async def start_chat():
13
  settings = {
14
- "model": "gpt-3.5-turbo",
15
  "temperature": 0,
16
  "top_p": 1,
17
  "frequency_penalty": 0,
18
  "presence_penalty": 0,
19
  }
20
  cl.user_session.set("settings", settings)
21
- welcome_message = "Welcome to the AIMS-Tutor! Please upload a Jupyter notebook (.ipynb and max. 5mb) to start."
22
  await cl.Message(content=welcome_message).send()
23
 
24
  files = None
25
  while files is None:
26
  files = await cl.AskFileMessage(
27
- content="Please upload a Jupyter notebook (.ipynb, max. 5mb):",
28
  accept={"application/x-ipynb+json": [".ipynb"]},
29
  max_size_mb=5
30
  ).send()
@@ -42,48 +50,92 @@ async def start_chat():
42
  # Initialize LangGraph chain with the retrieval chain
43
  retrieval_chain = cl.user_session.get("retrieval_manager").get_RAG_QA_chain()
44
  cl.user_session.set("retrieval_chain", retrieval_chain)
45
- aims_chain = create_aims_chain(retrieval_chain)
46
- cl.user_session.set("aims_chain", aims_chain)
 
 
 
 
 
47
 
48
  @cl.on_message
49
  async def main(message: cl.Message):
 
50
  # Retrieve the LangGraph chain from the session
51
- aims_chain = cl.user_session.get("aims_chain")
52
 
53
- if not aims_chain:
54
  await cl.Message(content="No document processing setup found. Please upload a Jupyter notebook first.").send()
55
  return
56
 
57
  # Create the initial state with the user message
58
  user_message = message.content
59
- state = AIMSState(messages=[HumanMessage(content=user_message)], next="supervisor", quiz=[], quiz_created=False, question_answered=False)
60
-
 
 
 
 
 
 
61
 
62
- print(f"Initial state: {state}")
63
 
64
  # Process the message through the LangGraph chain
65
- for s in aims_chain.stream(state, {"recursion_limit": 10}):
66
- print(f"State after processing: {s}")
67
-
68
- # Extract messages from the state
69
- if "__end__" not in s:
70
- agent_state = next(iter(s.values()))
71
- if "messages" in agent_state:
72
- response = agent_state["messages"][-1].content
73
- print(f"Response: {response}")
74
- await cl.Message(content=response).send()
75
- else:
76
- print("Error: No messages found in agent state.")
77
- else:
78
- # Check if the quiz was created and send it to the frontend
79
- if state["quiz_created"]:
80
- quiz_message = state["messages"][-1].content
81
- await cl.Message(content=quiz_message).send()
82
- # Check if a question was answered and send the response to the frontend
83
- if state["question_answered"]:
84
- qa_message = state["messages"][-1].content
85
  await cl.Message(content=qa_message).send()
86
 
87
- print("Reached end state.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
- break
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
  import chainlit as cl
4
  from dotenv import load_dotenv
5
  from document_processing import DocumentManager
6
  from retrieval import RetrievalManager
7
  from langchain_core.messages import AIMessage, HumanMessage
8
+ from graph import create_tutor_chain, TutorState
9
+ import shutil
10
 
11
  # Load environment variables
12
  load_dotenv()
13
 
14
+ # Set up logging
15
+ logging.basicConfig(level=logging.INFO)
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
  @cl.on_chat_start
20
  async def start_chat():
21
  settings = {
22
+ "model": "gpt4o",
23
  "temperature": 0,
24
  "top_p": 1,
25
  "frequency_penalty": 0,
26
  "presence_penalty": 0,
27
  }
28
  cl.user_session.set("settings", settings)
29
+ welcome_message = "Welcome to the Notebook-Tutor!"
30
  await cl.Message(content=welcome_message).send()
31
 
32
  files = None
33
  while files is None:
34
  files = await cl.AskFileMessage(
35
+ content="Please upload a Jupyter notebook (.ipynb, max. 5mb) to start:",
36
  accept={"application/x-ipynb+json": [".ipynb"]},
37
  max_size_mb=5
38
  ).send()
 
50
  # Initialize LangGraph chain with the retrieval chain
51
  retrieval_chain = cl.user_session.get("retrieval_manager").get_RAG_QA_chain()
52
  cl.user_session.set("retrieval_chain", retrieval_chain)
53
+ tutor_chain = create_tutor_chain(retrieval_chain)
54
+ cl.user_session.set("tutor_chain", tutor_chain)
55
+
56
+ ready_to_chat_message = "Notebook uploaded and processed successfully. You are now ready to chat!"
57
+ await cl.Message(content=ready_to_chat_message).send()
58
+
59
+ logger.info("Chat started and notebook uploaded successfully.")
60
 
61
  @cl.on_message
62
  async def main(message: cl.Message):
63
+
64
  # Retrieve the LangGraph chain from the session
65
+ tutor_chain = cl.user_session.get("tutor_chain")
66
 
67
+ if not tutor_chain:
68
  await cl.Message(content="No document processing setup found. Please upload a Jupyter notebook first.").send()
69
  return
70
 
71
  # Create the initial state with the user message
72
  user_message = message.content
73
+ state = TutorState(
74
+ messages=[HumanMessage(content=user_message)],
75
+ next="supervisor",
76
+ quiz=[],
77
+ quiz_created=False,
78
+ question_answered=False,
79
+ flashcards_created=False,
80
+ )
81
 
82
+ logger.info(f"Initial state: {state}")
83
 
84
  # Process the message through the LangGraph chain
85
+ for s in tutor_chain.stream(state, {"recursion_limit": 10}):
86
+ logger.info(f"State after processing: {s}")
87
+
88
+ agent_state = next(iter(s.values()))
89
+
90
+ if "QAAgent" in s:
91
+ if s['QAAgent']['question_answered']:
92
+ qa_message = agent_state["messages"][-1].content
93
+ logger.info(f"Sending QAAgent message: {qa_message}")
 
 
 
 
 
 
 
 
 
 
 
94
  await cl.Message(content=qa_message).send()
95
 
96
+ if "QuizAgent" in s:
97
+ if s['QuizAgent']['quiz_created']:
98
+ quiz_message = agent_state["messages"][-1].content
99
+ logger.info(f"Sending QuizAgent message: {quiz_message}")
100
+ await cl.Message(content=quiz_message).send()
101
+
102
+ if "FlashcardsAgent" in s:
103
+ if s['FlashcardsAgent']['flashcards_created']:
104
+ flashcards_message = agent_state["messages"][-1].content
105
+ logger.info(f"Sending FlashcardsAgent message: {flashcards_message}")
106
+ await cl.Message(content=flashcards_message).send()
107
+
108
+ # Search for the flashcard file in the specified directory
109
+ flashcard_directory = 'flashcards'
110
+ flashcard_file = None
111
+ latest_time = 0
112
+ for root, dirs, files in os.walk(flashcard_directory):
113
+ for file in files:
114
+ if file.startswith('flashcards_') and file.endswith('.csv'):
115
+ file_path = os.path.join(root, file)
116
+ file_time = os.path.getmtime(file_path)
117
+ if file_time > latest_time:
118
+ latest_time = file_time
119
+ flashcard_file = file_path
120
+
121
+ if flashcard_file:
122
+ logger.info(f"Flashcard path: {flashcard_file}")
123
+ # Use the File class to send the file
124
+ file_element = cl.File(name="Flashcards", path=flashcard_file, display="inline")
125
+ logger.info(f"Sending flashcards file: {file_element}")
126
+
127
+ await cl.Message(
128
+ content="Download the flashcards in .csv here:",
129
+ elements=[file_element]
130
+ ).send()
131
+
132
+ logger.info("Reached END state.")
133
+
134
 
135
+ @cl.on_chat_end
136
+ async def end_chat():
137
+ # Clean up the flashcards directory
138
+ flashcard_directory = 'flashcards'
139
+ if os.path.exists(flashcard_directory):
140
+ shutil.rmtree(flashcard_directory)
141
+ os.makedirs(flashcard_directory)
{aims_tutor β†’ notebook_tutor}/document_processing.py RENAMED
@@ -6,7 +6,7 @@ from langchain.retrievers import MultiQueryRetriever
6
  from langchain_openai.embeddings import OpenAIEmbeddings
7
  from langchain_openai import ChatOpenAI
8
  from dotenv import load_dotenv
9
- from aims_tutor.utils import tiktoken_len
10
 
11
  # Load environment variables
12
  load_dotenv()
 
6
  from langchain_openai.embeddings import OpenAIEmbeddings
7
  from langchain_openai import ChatOpenAI
8
  from dotenv import load_dotenv
9
+ from notebook_tutor.utils import tiktoken_len
10
 
11
  # Load environment variables
12
  load_dotenv()
notebook_tutor/graph.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ from langgraph.graph import END, StateGraph
3
+ from states import TutorState
4
+ from agents import create_agent, agent_node, create_team_supervisor, get_retrieve_information_tool, llm, flashcard_tool
5
+ from prompt_templates import PromptTemplates
6
+ import functools
7
+
8
+ # Load environment variables
9
+ load_dotenv()
10
+
11
+ # Create the LangGraph chain
12
+ def create_tutor_chain(retrieval_chain):
13
+ retrieve_information_tool = get_retrieve_information_tool(retrieval_chain)
14
+
15
+ # Create QA Agent
16
+ qa_agent = create_agent(
17
+ llm,
18
+ [retrieve_information_tool],
19
+ PromptTemplates().get_qa_agent_prompt(),
20
+ )
21
+ qa_node = functools.partial(agent_node, agent=qa_agent, name="QAAgent")
22
+
23
+ # Create Quiz Agent
24
+ quiz_agent = create_agent(
25
+ llm,
26
+ [retrieve_information_tool],
27
+ PromptTemplates().get_quiz_agent_prompt(),
28
+ )
29
+ quiz_node = functools.partial(agent_node, agent=quiz_agent, name="QuizAgent")
30
+
31
+ # Create Flashcards Agent
32
+ flashcards_agent = create_agent(
33
+ llm,
34
+ [retrieve_information_tool, flashcard_tool],
35
+ PromptTemplates().get_flashcards_agent_prompt(),
36
+ )
37
+ flashcards_node = functools.partial(agent_node, agent=flashcards_agent, name="FlashcardsAgent")
38
+
39
+ # Create Supervisor Agent
40
+ supervisor_agent = create_team_supervisor(
41
+ llm,
42
+ PromptTemplates().get_supervisor_agent_prompt(),
43
+ ["QAAgent", "QuizAgent", "FlashcardsAgent"],
44
+ )
45
+
46
+ # Build the LangGraph
47
+ tutor_graph = StateGraph(TutorState)
48
+ tutor_graph.add_node("QAAgent", qa_node)
49
+ tutor_graph.add_node("QuizAgent", quiz_node)
50
+ tutor_graph.add_node("FlashcardsAgent", flashcards_node)
51
+ tutor_graph.add_node("supervisor", supervisor_agent)
52
+
53
+ tutor_graph.add_edge("QAAgent", "supervisor")
54
+ tutor_graph.add_edge("QuizAgent", "supervisor")
55
+ tutor_graph.add_edge("FlashcardsAgent", "supervisor")
56
+ tutor_graph.add_conditional_edges(
57
+ "supervisor",
58
+ lambda x: "FINISH" if x.get("quiz_created") or x.get("question_answered") or x.get("flashcards_created") else x["next"],
59
+ {"QAAgent": "QAAgent",
60
+ "QuizAgent": "QuizAgent",
61
+ "FlashcardsAgent": "FlashcardsAgent",
62
+ "FINISH": END},
63
+ )
64
+
65
+ tutor_graph.set_entry_point("supervisor")
66
+ return tutor_graph.compile()
{aims_tutor β†’ notebook_tutor}/prompt_templates.py RENAMED
@@ -27,6 +27,36 @@ class PromptTemplates:
27
  Answer the query in a pretty format if the context is related to it; otherwise, answer: 'Sorry, I can't answer. Please ask another question.'
28
  """)
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  def get_rag_qa_prompt(self):
31
- # Returns the RAG QA prompt
32
  return self.rag_QA_prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  Answer the query in a pretty format if the context is related to it; otherwise, answer: 'Sorry, I can't answer. Please ask another question.'
28
  """)
29
 
30
+ self.QAAgent_prompt = """"You are a QA assistant who answers questions about the provided notebook content.
31
+ Provide the notebook code and context to answer the user's questions accurately and informatively."""
32
+
33
+ self.QuizAgent_prompt = """You are a quiz creator that generates quizzes based on the provided notebook content.
34
+ First, You MUST Use the retrieval_inforation_tool to gather context from the notebook to gather relevant and accurate information.
35
+ Next, create a 5-question quiz based on the information you have gathered. Include the answers at the end of the quiz.
36
+ Present the quiz to the user in a clear and concise manner."""
37
+
38
+ self.FlashcardsAgent_prompt = """
39
+ You are the Flashcard creator. Your mission is to create effective and concise flashcards based on the user's query and the content of the provided notebook. Your role involves the following tasks:
40
+ 1. Analyze User Query: Understand the user's request and determine the key concepts and information they need to learn.
41
+ 2. Search Notebook Content: Use the notebook content to gather relevant information and generate accurate and informative flashcards.
42
+ 3. Generate Flashcards: Create a series of flashcards content with clear questions on the front and detailed answers on the back. Ensure that the flashcards cover the essential points and concepts requested by the user.
43
+ 4. Export Flashcards: YOU MUST USE the flashcard_tool to create and export the flashcards in a format that can be easily imported into a flashcard management system, such as Anki.
44
+ 5. Provide the list of flashcards in a clear and organized manner.
45
+ Remember, your goal is to help the user learn efficiently and effectively by breaking down the notebook content into manageable, repeatable flashcards."""
46
+
47
+ self.SupervisorAgent_prompt = "You are a supervisor tasked with managing a conversation between the following agents: QAAgent, QuizAgent, FlashcardsAgent. Given the user request, decide which agent should act next."
48
+
49
  def get_rag_qa_prompt(self):
 
50
  return self.rag_QA_prompt
51
+
52
+ def get_qa_agent_prompt(self):
53
+ return self.QAAgent_prompt
54
+
55
+ def get_quiz_agent_prompt(self):
56
+ return self.QuizAgent_prompt
57
+
58
+ def get_flashcards_agent_prompt(self):
59
+ return self.FlashcardsAgent_prompt
60
+
61
+ def get_supervisor_agent_prompt(self):
62
+ return self.SupervisorAgent_prompt
{aims_tutor β†’ notebook_tutor}/retrieval.py RENAMED
File without changes
notebook_tutor/states.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, TypedDict
2
+ from langchain_core.messages import BaseMessage
3
+
4
+ # Define the state for the system
5
+ class TutorState(TypedDict):
6
+ messages: List[BaseMessage]
7
+ next: str
8
+ quiz: List[dict]
9
+ quiz_created: bool
10
+ question_answered: bool
11
+ flashcards_created: bool
12
+ # flashcard_path: str
notebook_tutor/tools.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Type, Annotated
2
+ from pydantic import BaseModel, Field
3
+ from langchain.tools import BaseTool
4
+ from langchain.callbacks.manager import (
5
+ AsyncCallbackManagerForToolRun,
6
+ CallbackManagerForToolRun,
7
+ )
8
+ import csv
9
+ import uuid
10
+ import os
11
+
12
+ class FlashcardInput(BaseModel):
13
+ flashcards: list = Field(description="A list of flashcards. Each flashcard should be a dictionary with 'question' and 'answer' keys.")
14
+
15
+ class FlashcardTool(BaseTool):
16
+ name = "create_flashcards"
17
+ description = "Create flashcards in a .csv format suitable for import into Anki"
18
+ args_schema: Type[BaseModel] = FlashcardInput
19
+
20
+ def _run(
21
+ self, flashcards: list, run_manager: Optional[CallbackManagerForToolRun] = None
22
+ ) -> str:
23
+ """Use the tool to create flashcards."""
24
+ filename = f"flashcards_{uuid.uuid4()}.csv"
25
+
26
+ save_path = os.path.join('flashcards', filename)
27
+
28
+ os.makedirs(os.path.dirname(save_path), exist_ok=True)
29
+
30
+ with open(save_path, 'w', newline='') as csvfile:
31
+ fieldnames = ['Front', 'Back']
32
+ writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
33
+
34
+ writer.writeheader()
35
+ for card in flashcards:
36
+ writer.writerow({'Front': card['question'], 'Back': card['answer']})
37
+
38
+ print("\033[93m" + f"Flashcards successfully created and saved to {save_path}" + "\033[0m")
39
+
40
+ return "csv file created successfully."
41
+
42
+ async def _arun(
43
+ self, flashcards: list, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
44
+ ) -> str:
45
+ """Use the tool asynchronously."""
46
+ raise NotImplementedError("create_flashcards does not support async")
47
+
48
+ # Instantiate the tool
49
+ create_flashcards_tool = FlashcardTool()
50
+
51
+ class RetrievalChainWrapper:
52
+ def __init__(self, retrieval_chain):
53
+ self.retrieval_chain = retrieval_chain
54
+
55
+ def retrieve_information(
56
+ self,
57
+ query: Annotated[str, "query to ask the RAG tool"]
58
+ ):
59
+ """Use this tool to retrieve information about the provided notebook."""
60
+ response = self.retrieval_chain.invoke({"question": query})
61
+ return response["response"].content
{aims_tutor β†’ notebook_tutor}/utils.py RENAMED
File without changes