Spaces:
Sleeping
Sleeping
Integrate LangGraph chain for AIMS quiz functionality and extend retrieval.py with RAG QA chain
Browse files- Added AIMessage and HumanMessage imports to support message processing in chainlit_frontend.py.
- Implemented AIMSState and create_aims_chain function to initialize LangGraph chain with retrieval capabilities.
- Modified main message handler in chainlit_frontend.py to utilize the LangGraph chain for processing user messages and generating responses.
- Extended retrieval.py with get_RAG_QA_chain method to facilitate retrieval-augmented question answering within the AIMS quiz functionality.
- aims_tutor/chainlit_frontend.py +33 -7
- aims_tutor/{test.py → graph.py} +65 -67
- aims_tutor/retrieval.py +7 -0
aims_tutor/chainlit_frontend.py
CHANGED
@@ -2,6 +2,8 @@ import chainlit as cl
|
|
2 |
from dotenv import load_dotenv
|
3 |
from document_processing import DocumentManager
|
4 |
from retrieval import RetrievalManager
|
|
|
|
|
5 |
|
6 |
# Load environment variables
|
7 |
load_dotenv()
|
@@ -36,16 +38,40 @@ async def start_chat():
|
|
36 |
cl.user_session.set("docs", doc_manager.get_documents())
|
37 |
cl.user_session.set("retrieval_manager", RetrievalManager(doc_manager.get_retriever()))
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
@cl.on_message
|
40 |
async def main(message: cl.Message):
|
41 |
-
# Retrieve the
|
42 |
-
|
43 |
-
|
|
|
44 |
await cl.Message(content="No document processing setup found. Please upload a Jupyter notebook first.").send()
|
45 |
return
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
from document_processing import DocumentManager
|
4 |
from retrieval import RetrievalManager
|
5 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
6 |
+
from graph import create_aims_chain, AIMSState
|
7 |
|
8 |
# Load environment variables
|
9 |
load_dotenv()
|
|
|
38 |
cl.user_session.set("docs", doc_manager.get_documents())
|
39 |
cl.user_session.set("retrieval_manager", RetrievalManager(doc_manager.get_retriever()))
|
40 |
|
41 |
+
# Initialize LangGraph chain with the retrieval chain
|
42 |
+
retrieval_chain = cl.user_session.get("retrieval_manager").get_RAG_QA_chain()
|
43 |
+
cl.user_session.set("retrieval_chain", retrieval_chain) # Store the retrieval chain in the session
|
44 |
+
aims_chain = create_aims_chain(retrieval_chain)
|
45 |
+
cl.user_session.set("aims_chain", aims_chain)
|
46 |
+
|
47 |
@cl.on_message
|
48 |
async def main(message: cl.Message):
|
49 |
+
# Retrieve the LangGraph chain from the session
|
50 |
+
aims_chain = cl.user_session.get("aims_chain")
|
51 |
+
|
52 |
+
if not aims_chain:
|
53 |
await cl.Message(content="No document processing setup found. Please upload a Jupyter notebook first.").send()
|
54 |
return
|
55 |
|
56 |
+
# Create the initial state with the user message
|
57 |
+
user_message = message.content
|
58 |
+
state = AIMSState(messages=[HumanMessage(content=user_message)], next="supervisor", quiz=[])
|
59 |
+
|
60 |
+
print(f"Initial state: {state}")
|
61 |
+
|
62 |
+
# Process the message through the LangGraph chain
|
63 |
+
for s in aims_chain.stream(state, {"recursion_limit": 10}):
|
64 |
+
print(f"State after processing: {s}")
|
65 |
|
66 |
+
# Extract messages from the state
|
67 |
+
if "__end__" not in s:
|
68 |
+
agent_state = next(iter(s.values()))
|
69 |
+
if "messages" in agent_state:
|
70 |
+
response = agent_state["messages"][-1].content
|
71 |
+
print(f"Response: {response}")
|
72 |
+
await cl.Message(content=response).send()
|
73 |
+
else:
|
74 |
+
print("Error: No messages found in agent state.")
|
75 |
+
else:
|
76 |
+
print("Reached end state.")
|
77 |
+
break
|
aims_tutor/{test.py → graph.py}
RENAMED
@@ -9,10 +9,31 @@ from langchain_core.runnables import RunnablePassthrough
|
|
9 |
from langchain_openai import ChatOpenAI
|
10 |
from langgraph.graph import END, StateGraph
|
11 |
import functools
|
|
|
12 |
|
13 |
# Load environment variables
|
14 |
load_dotenv()
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
@tool
|
17 |
def generate_quiz(
|
18 |
documents: Annotated[List[str], "List of documents to generate quiz from"],
|
@@ -24,14 +45,6 @@ def generate_quiz(
|
|
24 |
questions = [{"question": f"Question {i+1}", "options": ["Option 1", "Option 2", "Option 3"], "answer": "Option 1"} for i in range(num_questions)]
|
25 |
return questions
|
26 |
|
27 |
-
@tool
|
28 |
-
def retrieve_information(
|
29 |
-
query: Annotated[str, "query to ask the retrieve information tool"]
|
30 |
-
):
|
31 |
-
"""Use Retrieval Augmented Generation to retrieve information about the provided content."""
|
32 |
-
return {"response": "This is a placeholder response for retrieval information."}
|
33 |
-
|
34 |
-
|
35 |
# Define a function to create agents
|
36 |
def create_agent(
|
37 |
llm: ChatOpenAI,
|
@@ -107,63 +120,48 @@ class AIMSState(TypedDict):
|
|
107 |
quiz: List[dict]
|
108 |
|
109 |
|
110 |
-
#
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
aims_graph
|
141 |
-
|
142 |
-
aims_graph.
|
143 |
-
aims_graph.
|
144 |
-
|
145 |
-
"supervisor"
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
# Define the function to enter the chain
|
156 |
-
def enter_chain(message: str):
|
157 |
-
results = {
|
158 |
-
"messages": [HumanMessage(content="I'd like to take a quiz based on the uploaded notebook.")],
|
159 |
-
}
|
160 |
-
return results
|
161 |
-
|
162 |
-
aims_chain = enter_chain | chain
|
163 |
-
|
164 |
-
for s in aims_chain.stream(
|
165 |
-
"I'd like to take a quiz based on the uploaded notebook.", {"recursion_limit": 15}
|
166 |
-
):
|
167 |
-
if "__end__" not in s:
|
168 |
-
print(s)
|
169 |
-
print("---")
|
|
|
9 |
from langchain_openai import ChatOpenAI
|
10 |
from langgraph.graph import END, StateGraph
|
11 |
import functools
|
12 |
+
from retrieval import RetrievalManager
|
13 |
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
16 |
|
17 |
+
# Instantiate the language model
|
18 |
+
llm = ChatOpenAI(model="gpt-4o")
|
19 |
+
|
20 |
+
class RetrievalChainWrapper:
|
21 |
+
def __init__(self, retrieval_chain):
|
22 |
+
self.retrieval_chain = retrieval_chain
|
23 |
+
|
24 |
+
def retrieve_information(
|
25 |
+
self,
|
26 |
+
query: Annotated[str, "query to ask the RAG tool"]
|
27 |
+
):
|
28 |
+
"""Use this tool to retrieve information about the provided notebook."""
|
29 |
+
response = self.retrieval_chain.invoke({"question": query})
|
30 |
+
return response["response"].content
|
31 |
+
|
32 |
+
# Create an instance of the wrapper
|
33 |
+
def get_retrieve_information_tool(retrieval_chain):
|
34 |
+
wrapper_instance = RetrievalChainWrapper(retrieval_chain)
|
35 |
+
return tool(wrapper_instance.retrieve_information)
|
36 |
+
|
37 |
@tool
|
38 |
def generate_quiz(
|
39 |
documents: Annotated[List[str], "List of documents to generate quiz from"],
|
|
|
45 |
questions = [{"question": f"Question {i+1}", "options": ["Option 1", "Option 2", "Option 3"], "answer": "Option 1"} for i in range(num_questions)]
|
46 |
return questions
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Define a function to create agents
|
49 |
def create_agent(
|
50 |
llm: ChatOpenAI,
|
|
|
120 |
quiz: List[dict]
|
121 |
|
122 |
|
123 |
+
# Create the LangGraph chain
|
124 |
+
def create_aims_chain(retrieval_chain):
|
125 |
|
126 |
+
retrieve_information_tool = get_retrieve_information_tool(retrieval_chain)
|
127 |
+
|
128 |
+
# Create QA Agent
|
129 |
+
qa_agent = create_agent(
|
130 |
+
llm,
|
131 |
+
[retrieve_information_tool],
|
132 |
+
"You are a QA assistant who answers questions about the provided notebook content.",
|
133 |
+
)
|
134 |
+
|
135 |
+
qa_node = functools.partial(agent_node, agent=qa_agent, name="QAAgent")
|
136 |
+
|
137 |
+
# Create Quiz Agent
|
138 |
+
quiz_agent = create_agent(
|
139 |
+
llm,
|
140 |
+
[generate_quiz, retrieve_information_tool],
|
141 |
+
"You are a quiz creator that generates quizzes based on the provided notebook content.",
|
142 |
+
)
|
143 |
+
quiz_node = functools.partial(agent_node, agent=quiz_agent, name="QuizAgent")
|
144 |
+
|
145 |
+
# Create Supervisor Agent
|
146 |
+
supervisor_agent = create_team_supervisor(
|
147 |
+
llm,
|
148 |
+
"You are a supervisor tasked with managing a conversation between the following agents: QAAgent, QuizAgent. Given the user request, decide which agent should act next.",
|
149 |
+
["QAAgent", "QuizAgent"],
|
150 |
+
)
|
151 |
+
|
152 |
+
# Build the LangGraph
|
153 |
+
aims_graph = StateGraph(AIMSState)
|
154 |
+
aims_graph.add_node("QAAgent", qa_node)
|
155 |
+
aims_graph.add_node("QuizAgent", quiz_node)
|
156 |
+
aims_graph.add_node("supervisor", supervisor_agent)
|
157 |
+
|
158 |
+
aims_graph.add_edge("QAAgent", "supervisor")
|
159 |
+
aims_graph.add_edge("QuizAgent", "supervisor")
|
160 |
+
aims_graph.add_conditional_edges(
|
161 |
+
"supervisor",
|
162 |
+
lambda x: x["next"],
|
163 |
+
{"QAAgent": "QAAgent", "QuizAgent": "QuizAgent", "WAIT": END, "FINISH": END},
|
164 |
+
)
|
165 |
+
|
166 |
+
aims_graph.set_entry_point("supervisor")
|
167 |
+
return aims_graph.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aims_tutor/retrieval.py
CHANGED
@@ -42,3 +42,10 @@ class RetrievalManager:
|
|
42 |
response = retrieval_augmented_qa_chain.invoke({"question": question})
|
43 |
|
44 |
return response["response"].content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
response = retrieval_augmented_qa_chain.invoke({"question": question})
|
43 |
|
44 |
return response["response"].content
|
45 |
+
|
46 |
+
def get_RAG_QA_chain(self):
|
47 |
+
return (
|
48 |
+
{"context": itemgetter("question") | self.retriever, "question": itemgetter("question")}
|
49 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
50 |
+
| {"response": self.prompts.get_rag_qa_prompt() | self.chat_model, "context": itemgetter("context")}
|
51 |
+
)
|