Spaces:
Paused
Paused
File size: 4,549 Bytes
b77b218 cea0ce1 b77b218 cea0ce1 b77b218 cea0ce1 b77b218 cea0ce1 bb2dcc7 b77b218 cea0ce1 bb2dcc7 cea0ce1 bb2dcc7 b77b218 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
from io import BytesIO
import os
import chainlit as cl
import httpx
from dotenv import load_dotenv
from langchain.schema.runnable.config import RunnableConfig
from sql_agent import SQLAgent
from openai import AsyncOpenAI
from chainlit.element import Audio
# Load the .env file
load_dotenv()
# Set up the transcription API (e.g., Eleven Labs)
ELEVENLABS_API_KEY = os.environ.get("ELEVENLABS_API_KEY")
ELEVENLABS_VOICE_ID = os.environ.get("ELEVENLABS_VOICE_ID")
if not ELEVENLABS_API_KEY or not ELEVENLABS_VOICE_ID:
raise ValueError("ELEVENLABS_API_KEY and ELEVENLABS_VOICE_ID must be set")
client = AsyncOpenAI()
@cl.step(type="tool")
async def speech_to_text(audio_file):
response = await client.audio.transcriptions.create(
model="whisper-1", file=audio_file
)
return response.text
@cl.step(type="tool")
async def generate_text_answer(transcription, images):
model = "gpt-4-turbo"
messages = [{"role": "user", "content": transcription}]
response = await client.chat.completions.create(
messages=messages, model=model, temperature=0.3
)
return response.choices[0].message.content
@cl.step(type="tool")
async def text_to_speech(text: str, mime_type: str):
CHUNK_SIZE = 1024
url = f"https://api.elevenlabs.io/v1/text-to-speech/{ELEVENLABS_VOICE_ID}"
headers = {
"Accept": mime_type,
"Content-Type": "application/json",
"xi-api-key": ELEVENLABS_API_KEY
}
data = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
async with httpx.AsyncClient(timeout=25.0) as client:
response = await client.post(url, json=data, headers=headers)
response.raise_for_status() # Ensure we notice bad responses
buffer = BytesIO()
buffer.name = f"output_audio.{mime_type.split('/')[1]}"
async for chunk in response.aiter_bytes(chunk_size=CHUNK_SIZE):
if chunk:
buffer.write(chunk)
buffer.seek(0)
return buffer.name, buffer.read()
@cl.on_chat_start
async def on_chat_start():
cl.user_session.set("agent", SQLAgent)
@cl.on_message
async def on_message(message: cl.Message):
await process_message(message.content)
@cl.on_audio_chunk
async def on_audio_chunk(chunk: cl.AudioChunk):
if chunk.isStart:
buffer = BytesIO()
# This is required for whisper to recognize the file type
buffer.name = f"input_audio.{chunk.mimeType.split('/')[1]}"
# Initialize the session for a new audio stream
cl.user_session.set("audio_buffer", buffer)
cl.user_session.set("audio_mime_type", chunk.mimeType)
cl.user_session.get("audio_buffer").write(chunk.data)
@cl.on_audio_end
async def on_audio_end(elements: list[Audio]):
audio_buffer: BytesIO = cl.user_session.get("audio_buffer")
audio_buffer.seek(0)
audio_file = audio_buffer.read()
audio_mime_type: str = cl.user_session.get("audio_mime_type")
input_audio_el = Audio(
mime=audio_mime_type, content=audio_file, name=audio_buffer.name
)
await cl.Message(
author="You",
type="user_message",
content="",
elements=[input_audio_el, *elements]
).send()
answer_message = await cl.Message(content="").send()
whisper_input = (audio_buffer.name, audio_file, audio_mime_type)
transcription = await speech_to_text(whisper_input)
await process_message(transcription, answer_message, audio_mime_type)
async def process_message(content: str, answer_message=None, mime_type=None):
agent = cl.user_session.get("agent")
cb = cl.AsyncLangchainCallbackHandler(stream_final_answer=True)
config = RunnableConfig(callbacks=[cb])
async with cl.Step(name="SmartQuery Agent", root=True) as step:
step.input = content
result = await agent.ainvoke(content, config=config)
final_answer = result.get('output', 'No answer returned')
await step.stream_token(final_answer)
if mime_type:
output_name, output_audio = await text_to_speech(final_answer, mime_type)
output_audio_el = Audio(
name=output_name,
auto_play=True,
mime=mime_type,
content=output_audio,
)
answer_message.elements = [output_audio_el]
await answer_message.update()
else:
await cl.Message(content=final_answer).send()
|