SmartQuery / app.py
JulsdL's picture
Add initial implementation of SQL agent with few-shot learning and ChainLit integration for dynamic SQL query generation and execution based on user input.
cea0ce1
raw
history blame
793 Bytes
import chainlit as cl
from langchain.schema.runnable.config import RunnableConfig
from sql_agent import SQLAgent
# Test the agent
# agent.invoke({"input": "How many artists are there?"})
# ChainLit Integration
@cl.on_chat_start
async def on_chat_start():
cl.user_session.set("agent", SQLAgent)
@cl.on_message
async def on_message(message: cl.Message):
agent = cl.user_session.get("agent") # Get the agent from the session
cb = cl.AsyncLangchainCallbackHandler(stream_final_answer=True)
config = RunnableConfig(callbacks=[cb])
result = await agent.ainvoke(message.content, config=config)
msg = cl.Message(content="")
async for chunk in result:
await msg.stream_token(chunk)
await msg.send()
# Run the app
if __name__ == "__main__":
cl.run()