SmartQuery / sql_agent.py
JulsdL's picture
Add initial implementation of SQL agent with few-shot learning and ChainLit integration for dynamic SQL query generation and execution based on user input.
cea0ce1
raw
history blame
1.82 kB
from dotenv import load_dotenv
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.vectorstores import FAISS
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_core.prompts import ChatPromptTemplate, FewShotPromptTemplate, MessagesPlaceholder, PromptTemplate, SystemMessagePromptTemplate
from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_community.utilities import SQLDatabase
from prompt_templates import few_shot_examples, system_prefix
# Load the .env file
load_dotenv()
# Initialize the SQL database
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
# Check the database connection
print(db.dialect)
print(db.get_usable_table_names())
db.run("SELECT * FROM Artist LIMIT 10;")
# Initialize the LLM
llm = ChatOpenAI(model="gpt-4o", temperature=0)
# Example selector will dynamically select examples based on the input question
example_selector = SemanticSimilarityExampleSelector.from_examples(
few_shot_examples,
OpenAIEmbeddings(),
FAISS,
k=5,
input_keys=["input"],
)
# Few-shot prompt template
few_shot_prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=PromptTemplate.from_template(
"User input: {input}\nSQL query: {query}"
),
input_variables=["input", "dialect", "top_k"],
prefix=system_prefix,
suffix="",
)
# Full prompt template
full_prompt = ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate(prompt=few_shot_prompt),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
]
)
# Create the SQL agent
SQLAgent = create_sql_agent(
llm=llm,
db=db,
prompt=full_prompt,
verbose=True,
agent_type="openai-tools",
)