import chainlit as cl from langchain.schema.runnable.config import RunnableConfig from sql_agent import SQLAgent # ChainLit Integration @cl.on_chat_start async def on_chat_start(): cl.user_session.set("agent", SQLAgent) @cl.on_message async def on_message(message: cl.Message): agent = cl.user_session.get("agent") # Get the agent from the session cb = cl.AsyncLangchainCallbackHandler(stream_final_answer=True) config = RunnableConfig(callbacks=[cb]) async with cl.Step(name="SmartQuery Agent", root=True) as step: step.input = message.content result = await agent.ainvoke(message.content, config=config) # Assuming the result is a dictionary with a key 'output' containing the final answer final_answer = result.get('output', 'No answer returned') # Stream the final answer as a token to the step await step.stream_token(final_answer)