File size: 6,361 Bytes
484b605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import math
import os
import sys

import fire
from tqdm import tqdm
import pandas as pd
import torch
import transformers
from peft import PeftModel
import datasets
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer

from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter

device = "cuda"


def main(

    load_8bit: bool = True,

    base_model: str = "decapoda-research/llama-7b-hf",

    lora_weights: str = "./lora-alpaca",

    data_path: str = "./data",

    output_path: str = "./output",

    eval_rate: float = 0.1,

    batch_size: int = 32,

    # The prompt template to use, will default to alpaca.

    prompt_template: str = "alpaca",

):
    base_model = base_model or os.environ.get("BASE_MODEL", "")
    assert (base_model), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"

    prompter = Prompter(prompt_template)
    tokenizer = LlamaTokenizer.from_pretrained(base_model)
    if device == "cuda":
        model = LlamaForCausalLM.from_pretrained(
            base_model,
            load_in_8bit=load_8bit,
            torch_dtype=torch.float16,
            device_map="auto",
        )
        model = PeftModel.from_pretrained(
            model,
            lora_weights,
            torch_dtype=torch.float16,
        )

    # unwind broken decapoda-research config
    model.config.pad_token_id = tokenizer.pad_token_id = 0  # unk
    model.config.bos_token_id = 1
    model.config.eos_token_id = 2

    if not load_8bit:
        model.half()  # seems to fix bugs for some users.

    model.eval()
    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)

    def evaluate_one(

        instruction,

        input=None,

        temperature=0.1,

        top_p=0.75,

        top_k=40,

        num_beams=2,

        max_new_tokens=128,

        **kwargs,

    ):
        prompt = prompter.generate_prompt(instruction, input)
        inputs = tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(device)
        generation_config = GenerationConfig(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            num_beams=num_beams,
            **kwargs,
        )

        # Without streaming
        with torch.no_grad():
            generation_output = model.generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                max_new_tokens=max_new_tokens,
            )
        s = generation_output.sequences[0]
        output = tokenizer.decode(s, skip_special_tokens=True)
        return prompter.get_response(output)

    def evaluate_all():
        # data = datasets.load_dataset("json", data_files=data_path)
        # data = data["train"]
        # df = data.to_pandas()
        df = pd.read_json(data_path, orient='records')
        print(df.info())
        # 计算准确率
        correct = 0
        total = 0
        total_step = len(df)
        pbar = tqdm(total=total_step, unit='batch')
        error = []
        for i in range(total_step):
            instruction = df['instruction'].iloc[i]
            input = df['input'].iloc[i]
            label = df['output'].iloc[i]
            pred = evaluate_one(instruction=instruction, input=input)
            if pred == label:
                correct += 1
            else:
                error.append((label, pred))
            total += 1
            acc = correct / total
            # 更新进度条
            # Update the progress bar
            pbar.set_description(
                f"Testing: Sample [{total}/{total_step}] Acc: {acc :.4f}")
            pbar.update(1)

        for e in error:
            print(e)

    def evaluate_by_batch(

        temperature=0.1,

        top_p=0.75,

        top_k=40,

        num_beams=1,

        max_new_tokens=32

    ):
        df = pd.read_json(data_path, orient='records')
        # df = df.sample(frac=eval_rate).reset_index(drop=True)
        df['prompt'] = df.apply(lambda x: prompter.generate_prompt(
            x['instruction'], x['input']), axis=1)
        tokenizer.padding_side = "left"  # Allow batched inference

        generation_config = GenerationConfig(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            num_beams=num_beams
        )

        outputs = []
        total = 0
        total_step = math.ceil(len(df) / batch_size)
        pbar = tqdm(total=total_step, unit='batch')
        # 计算准确率
        with torch.no_grad():
            for i in range(total_step):
                batch = df.iloc[i*batch_size:(i+1)*batch_size]
                inputs = tokenizer(batch['prompt'].tolist(), return_tensors="pt", padding=True)[
                    'input_ids'].to(device)

                generation_outputs = model.generate(
                    input_ids=inputs,
                    generation_config=generation_config,
                    max_new_tokens=max_new_tokens,
                    pad_token_id=tokenizer.pad_token_id
                )

                for g in generation_outputs:
                    decoded_item = tokenizer.decode(
                        g, skip_special_tokens=True)
                    try:
                        output = prompter.get_response(decoded_item)
                    except:
                        output = decoded_item
                    outputs.append(output)
                    total += 1

                # 更新进度条
                pbar.set_description(f"Testing: Sample [{total}/{len(df)}] ")
                pbar.update(1)
        df['pred'] = outputs
        df['pred'].to_csv(output_path, index=False)

    evaluate_by_batch()


if __name__ == "__main__":
    # fire.Fire(main)
    import yaml
    dataset_param = sys.argv[1]
    with open("./configs/evaluate_params.yaml", "r") as stream:
        # try:
        params = yaml.safe_load(stream)
        print('=' * 80)
        print(params[dataset_param])
        print('=' * 80)

    # fire.Fire(train)
    main(**params[dataset_param])