Spaces:
Sleeping
Sleeping
File size: 39,083 Bytes
15b9da3 46f5603 c775910 a0a3ddc a6fb9ef 2a3dc52 15b9da3 029fc0c f4a1918 78f5c78 d947472 46f5603 c71a877 46f5603 2a3dc52 46f5603 029fc0c 2a3dc52 46f5603 500c53b 2a3dc52 83627a0 46f5603 8a473de 500c53b 8a473de 500c53b 8a473de 11b1dbb 877f289 11b1dbb 877f289 11b1dbb 500c53b f7092d6 500c53b f7092d6 500c53b 11b1dbb f7092d6 c9e97ad daa5f8e e56d3c5 daa5f8e e56d3c5 daa5f8e cc83ab8 12a83ad c1ee647 f35c083 19c63ff f35c083 19c63ff f35c083 20da85e c2544ea 20da85e c2544ea 20da85e a6fb9ef 20da85e a6fb9ef 20da85e c2544ea 20da85e c2544ea 6e5cbf8 e4d8ee5 500c53b 46f5603 f31eb9e c71a877 e4d8ee5 500c53b e4d8ee5 2a3dc52 e4d8ee5 2a3dc52 e4d8ee5 83627a0 2a3dc52 83627a0 500c53b e56d3c5 500c53b e56d3c5 f1f8df0 e56d3c5 f1f8df0 e56d3c5 f1f8df0 e56d3c5 f1f8df0 e56d3c5 500c53b cc83ab8 b08769a cc83ab8 f768d7d f6fe762 5226d04 f6fe762 cc83ab8 252a456 12a83ad 12037a8 fa5cc21 252a456 0fea6e9 fa5cc21 f768d7d 564a847 12037a8 46f5603 19c63ff bab4c75 19c63ff bab4c75 19c63ff bab4c75 19c63ff bab4c75 19c63ff f768d7d 19c63ff 12037a8 f35c083 f7c7167 f35c083 b08769a e722779 ef415ec f35c083 4ace1cb f35c083 f768d7d f35c083 12037a8 6e5cbf8 e2e704a 6e5cbf8 46f5603 d947472 c71a877 500c53b 46f5603 8a473de 11b1dbb dad95ce 11b1dbb daa5f8e cc83ab8 1d7518e cc83ab8 12a83ad 0fea6e9 19c63ff f35c083 19c63ff f35c083 6e5cbf8 8de85cd 6e5cbf8 06ae453 6e5cbf8 ef458b0 20da85e f35c083 46f5603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
import os
import gradio as gr
from openai import OpenAI
import json
import tempfile
is_env_local = os.getenv("IS_ENV_LOCAL", "false") == "true"
print(f"is_env_local: {is_env_local}")
# KEY CONFIG
if is_env_local:
with open("local_config.json") as f:
config = json.load(f)
IS_ENV_PROD = "False"
OPEN_AI_KEY = config["OPEN_AI_KEY"]
else:
OPEN_AI_KEY = os.getenv("OPEN_AI_KEY")
OPEN_AI_CLIENT = OpenAI(api_key=OPEN_AI_KEY)
def generate_topics(model, max_tokens, sys_content, scenario, eng_level, user_generate_topics_prompt):
"""
根据系统提示和用户输入的情境及主题,调用OpenAI API生成相关的主题句。
"""
user_content = f"""
scenario is {scenario}
english level is {eng_level}
{user_generate_topics_prompt}
"""
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
request_payload = {
"model": model,
"messages": messages,
"max_tokens": max_tokens,
"response_format": { "type": "json_object" }
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
content = response.choices[0].message.content
topics = json.loads(content)["topics"]
topics_text = json.dumps(topics)
gr_update = gr.update(visible=False, value=topics_text)
return gr_update
def update_topic_input(topic):
return topic
def generate_points(model, max_tokens, sys_content, scenario, eng_level, topic, user_generate_points_prompt):
"""
根据系统提示和用户输入的情境、主题,调用OpenAI API生成相关的主题句。
"""
user_content = f"""
scenario is {scenario}
english level is {eng_level}
topic is {topic}
{user_generate_points_prompt}
"""
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
request_payload = {
"model": model,
"messages": messages,
"max_tokens": max_tokens,
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
content = response.choices[0].message.content
points = json.loads(content)["points"]
points_text = json.dumps(points)
gr_update = gr.update(visible=False, value=points_text)
return gr_update
def update_points_input(points):
return points
def generate_topic_sentences(model, max_tokens, sys_content, scenario, eng_level, topic, points, user_generate_topic_sentences_prompt):
"""
根据系统提示和用户输入的情境及要点,调用OpenAI API生成相关的主题句及其合理性解释。
"""
user_content = f"""
scenario is {scenario}
english level is {eng_level}
topic is {topic}
points is {points}
{user_generate_topic_sentences_prompt}
"""
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
response_format = { "type": "json_object" }
request_payload = {
"model": model,
"messages": messages,
"max_tokens": max_tokens,
"response_format": response_format
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
response_content = json.loads(response.choices[0].message.content)
json_content = response_content["results"]
topic_sentences_text = json.dumps(json_content, ensure_ascii=False)
gr_update = gr.update(visible=False, value=topic_sentences_text)
return gr_update
def update_topic_sentence_input(topic_sentences_radio, topic_sentence_output):
selected_topic_sentence = topic_sentences_radio
topic_sentence_output = json.loads(topic_sentence_output)
topic_sentence_input = ""
for ts in topic_sentence_output:
if ts["topic-sentence"] == selected_topic_sentence:
appropriate = "O 適合" if ts["appropriate"] == "Y" else "X 不適合"
border_color = "green" if ts["appropriate"] == "Y" else "red"
background_color = "#e0ffe0" if ts["appropriate"] == "Y" else "#ffe0e0"
suggestion_html = f"""
<div style="border: 2px solid {border_color}; background-color: {background_color}; padding: 10px; border-radius: 5px;">
<p>你選了主題句:{selected_topic_sentence}</p>
<p>是否適當:{appropriate}</p>
<p>原因:{ts['reason']}</p>
</div>
"""
topic_sentence_input = ts["topic-sentence"] if ts["appropriate"] == "Y" else ""
break
return topic_sentence_input, suggestion_html
def generate_supporting_sentences(model, max_tokens, sys_content, scenario, eng_level, topic, points, topic_sentence, user_generate_supporting_sentences_prompt):
"""
根据系统提示和用户输入的情境、主题、要点、主题句,调用OpenAI API生成相关的支持句。
"""
user_content = f"""
scenario is {scenario}
english level is {eng_level}
topic is {topic}
points is {points}
topic sentence is {topic_sentence}
{user_generate_supporting_sentences_prompt}
"""
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
request_payload = {
"model": model,
"messages": messages,
"max_tokens": max_tokens,
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
content = response.choices[0].message.content.strip()
gr_update = gr.update(choices=[content])
return gr_update
def update_supporting_sentences_input(supporting_sentences_radio):
return supporting_sentences_radio
def generate_conclusion_sentences(model, max_tokens, sys_content, scenario, eng_level, topic, points, topic_sentence, user_generate_conclusion_sentence_prompt):
"""
根据系统提示和用户输入的情境、主题、要点、主题句,调用OpenAI API生成相关的结论句。
"""
user_content = f"""
scenario is {scenario}
english level is {eng_level}
topic is {topic}
points is {points}
topic sentence is {topic_sentence}
{user_generate_conclusion_sentence_prompt}
"""
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
request_payload = {
"model": model,
"messages": messages,
"max_tokens": max_tokens,
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
content = response.choices[0].message.content.strip()
return content
def generate_paragraph(topic_sentence, supporting_sentences, conclusion_sentence):
"""
根据用户输入的主题句、支持句、结论句,生成完整的段落。
"""
paragraph = f"{topic_sentence}\n{supporting_sentences}\n{conclusion_sentence}"
return paragraph
def generate_paragraph_evaluate(paragraph, user_generate_paragraph_evaluate_prompt):
"""
根据用户输入的段落,调用OpenAI API生成相关的段落分析。
"""
user_content = f"""
paragraph is {paragraph}
{user_generate_paragraph_evaluate_prompt}
"""
messages = [
{"role": "system", "content": paragraph},
{"role": "user", "content": user_content}
]
response_format = { "type": "json_object" }
request_payload = {
"model": "gpt-3.5-turbo",
"messages": messages,
"max_tokens": 500,
"response_format": response_format
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
content = response.choices[0].message.content
return content
def generate_correct_grammatical_spelling_errors(eng_level, paragraph, user_correct_grammatical_spelling_errors_prompt):
"""
根据用户输入的段落,调用OpenAI API生成相关的文法和拼字错误修正。
"""
user_content = f"""
level is {eng_level}
paragraph is {paragraph}
{user_correct_grammatical_spelling_errors_prompt}
"""
messages = [
{"role": "system", "content": paragraph},
{"role": "user", "content": user_content}
]
response_format = { "type": "json_object" }
request_payload = {
"model": "gpt-3.5-turbo",
"messages": messages,
"max_tokens": 500,
"response_format": response_format
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
content = response.choices[0].message.content
return content
def generate_refine_paragraph(eng_level, paragraph, user_refine_paragraph_prompt):
"""
根据用户输入的段落,调用OpenAI API生成相关的段落改善建议。
"""
user_content = f"""
eng_level is {eng_level}
paragraph is {paragraph}
{user_refine_paragraph_prompt}
"""
messages = [
{"role": "system", "content": paragraph},
{"role": "user", "content": user_content}
]
response_format = { "type": "json_object" }
request_payload = {
"model": "gpt-3.5-turbo",
"messages": messages,
"max_tokens": 500,
"response_format": response_format
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
content = response.choices[0].message.content
return content
def paragraph_save_and_tts(paragraph_text):
"""
Saves the paragraph text and generates an audio file using OpenAI's TTS.
"""
try:
# Call OpenAI's TTS API to generate speech from text
response = OPEN_AI_CLIENT.audio.speech.create(
model="tts-1",
voice="alloy",
input=paragraph_text,
)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_file.write(response.content)
# Get the file path of the temp file
audio_path = temp_file.name
# Return the path to the audio file along with the text
return paragraph_text, audio_path
except Exception as e:
print(f"An error occurred while generating TTS: {e}")
# Handle the error appropriately (e.g., return an error message or a default audio path)
return paragraph_text, None
with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.orange)) as demo:
# basic inputs 主題與情境
with gr.Row():
with gr.Column():
model = gr.Radio(["gpt-4o", "gpt-3.5-turbo"], label="Model", value="gpt-4o", visible=False)
max_tokens = gr.Slider(minimum=50, maximum=4000, value=4000, label="Max Tokens", visible=False)
sys_content_input = gr.Textbox(label="System Prompt", value="You are an English teacher who is practicing with me to improve my English writing skill.", visible=False)
with gr.Row():
eng_level_input = gr.Radio(["beginner", "intermediate", "advanced"], label="English Level", value="beginner")
with gr.Row():
gr.Markdown("# Step 1. 你今天想練習寫什麼呢?")
with gr.Row():
gr.Markdown("""## 寫作的主題與讀者、寫作的目的、文章的風格、長度、範圍、以及作者的專業知識等都有關係。因為不容易找主題,所以利用兩階段方式來找主題。特為較無英文寫作經驗的 基礎級使用者 提供多種大範圍情境,待篩選情境後,下一步再來決定明確的主題。""")
with gr.Row():
scenario_values = [
"Health",
"Thanksgiving",
"Halloween",
"moon festival in Taiwan",
"School and Learning",
"Travel and Places",
"Family and Friends",
"Hobbies and Leisure Activities",
"Health and Exercise",
"Personal Experiences",
"My Future Goals",
"School Life",
"Pets",
"A Problem and Solution",
"Holidays and Celebrations",
"My Favorite Cartoon/Anime"
]
scenario_input = gr.Dropdown(label="先選擇一個大範圍的情境:", choices=scenario_values, value="Health")
# Step 2. 確定段落主題
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown("# Step 2. 確定段落主題")
with gr.Row():
with gr.Column():
gr.Markdown("""## 主題是整個段落要探討、闡述的主要議題。確定主題對於段落的架構、內容非常重要,幫助讀者預期段落的內容,增加閱讀的速度及理解度。寫作過程中,掌握主題可以幫助作者有效傳達自己的想法和觀點,幫助讀者更容易理解。""")
with gr.Column():
with gr.Accordion("參考指引:情境與主題如何搭配呢?", open=False):
gr.Markdown("""
例如,情境是 `School & Learning` ,你可以依照自己的興趣、背景及經驗,決定合適的主題,像是:`My First Day at School` 或 `The Role of Internet in Learning`
例如,情境是 `Climate Change`,相關主題可能是 `Global Warming` 或 `Extreme Weather Events`
""")
with gr.Row(visible=False) as topic_params:
default_generate_topics_prompt = """
Give me 10 topics relevant to Scenario,
for a paragraph. Just the topics, no explanation, use simple English language.
Make sure the vocabulary you use is at english level.
output use JSON
EXAMPLE:
"topics":["topic1", "topic2", "topic3", "topic4", "topic5", "topic6", "topic7", "topic8", "topic9", "topic10"]
"""
user_generate_topics_prompt = gr.Textbox(label="Topics Prompt", value=default_generate_topics_prompt, visible=False)
with gr.Row():
with gr.Column():
topic_input = gr.Textbox(label="選擇合適的主題:", interactive=False)
with gr.Column():
generate_topics_button = gr.Button("使用 🪄 JUTOR 產生 10 個段落主題,再挑選一個來練習吧!", variant="primary")
topic_output = gr.Textbox(label="AI Generated Topic 主題", visible=True, value=[])
@gr.render(inputs=topic_output)
def render_topics(topics):
topics_list = json.loads(topics)
topic_radio = gr.Radio(topics_list, label="Topics", elem_id="topic_button")
topic_radio.select(
fn=update_topic_input,
inputs=[topic_radio],
outputs=[topic_input]
)
return topic_radio
# Step 3. 寫出段落要點
with gr.Row():
with gr.Column():
with gr.Row() as points_params:
default_generate_points_prompt = """
Please provide main points to develop in a paragraph about topic in the context of scenario,
use simple English language and make sure the vocabulary you use is at eng_level.
No more explanation either no developing these points into a simple paragraph.
Output use JSON format
EXAMPLE:
"points":["point1", "point2", "point3"]
"""
user_generate_points_prompt = gr.Textbox(label="Points Prompt", value=default_generate_points_prompt, visible=False)
with gr.Row() as points_html:
gr.Markdown("# Step 3. 寫出段落要點")
with gr.Row():
gr.Markdown("## 根據情境、主題,可以視主題不同,試著寫出 1-3 個要點。段落要點務必選擇比較相關的,才好寫入一個段落。不相關的要點會讓段落缺乏連貫一致性。")
with gr.Row():
gr.Markdown("### `基礎級使用者` 先從 1 個要點開始練習,比較好掌握;等熟悉之後在 `實力級`,就可選擇 2-3 個要點來發揮。")
with gr.Row():
with gr.Column():
points_input = gr.Textbox(label="#1 要點/關鍵字")
with gr.Column():
generate_points_button = gr.Button("找尋靈感?使用 🪄 JUTOR 產生要點/關鍵字", variant="primary")
points_output = gr.Textbox(label="AI Generated Points 要點", visible=True, value=[])
@gr.render(inputs=points_output)
def render_points(points):
points_list = json.loads(points)
points_radio = gr.Radio(points_list, label="Points", elem_id="point_button")
points_radio.select(
fn=update_points_input,
inputs=[points_radio],
outputs=[points_input]
)
return points_radio
# Step 4. 選定主題句
with gr.Row():
with gr.Column():
with gr.Row() as topic_sentences_params:
default_generate_topic_sentences_prompt = """
Please provide one appropriate topic sentence that aptly introduces the subject for the given scenario and topic.
Additionally, provide two topic sentences that, while related to the topic,
would be considered inappropriate or less effective for the specified context.
Those sentences must include the three main points:".
Use English language and each sentence should not be too long.
For each sentence, explain the reason in Traditional Chinese, Taiwan, 繁體中文 zh-TW.
Make sure the vocabulary you use is at level.
Output use JSON format
EXAMPLE:
"results":
[
{{ "topic-sentence": "#","appropriate": "Y/N", "reason": "#中文解釋" }} ,
{{ "topic-sentence": "#","appropriate": "Y/N", "reason": "#中文解釋" }},
{{ "topic-sentence": "#","appropriate": "Y/N", "reason": "#中文解釋" }}
]
"""
user_generate_topic_sentences_prompt = gr.Textbox(label="Topic Sentences Prompt", value=default_generate_topic_sentences_prompt, visible=False)
with gr.Row() as topic_sentences_html:
gr.Markdown("# Step 4. 選定主題句")
with gr.Row():
with gr.Column():
gr.Markdown("## 主題句(Topic Sentence)是一個段落中最重要的句子,它介紹主題並含括該段落的所有要點,引起讀者的興趣。就像藍圖一樣,指出客廳、廚房、臥室等位置。")
gr.Markdown("## 主題句通常位於段落的開頭,幫助讀者迅速理解段落的內容。如果沒有主題句,段落的架構及內容的一致性及連貫性就會受影響。")
gr.Markdown("## 主題句的範圍,應能適當含括你剛才決定的各個要點,範圍不要太大,以致無法在一個段落清楚説明,也不能太小,無法含括段落的所有要點。")
with gr.Column():
with gr.Accordion("參考指引:合適的主題句?", open=False):
gr.Markdown("""舉例,情境是 `School & Learning`,段落主題是 `Time Management`,那麼 `Balancing school work and leisure time is a crucial aspect of effective time management` 就是合適的主題句,因為它清楚點出該段落將説明有效運用時間來讓課業及娛樂取得平衡。""")
with gr.Row():
with gr.Column():
topic_sentence_input = gr.Textbox(label="Topic Sentences")
with gr.Column():
generate_topic_sentences_button = gr.Button("生成並在下面 3 個 JUTOR 產生的主題句中,選出一個最合適的", variant="primary")
topic_sentence_output = gr.Textbox(label="AI Generated Topic Sentences 主題句", value=[])
@gr.render(inputs=topic_sentence_output)
def render_topic_sentences(topic_sentences):
# Parsing the JSON string to a list
topic_sentences_list = json.loads(topic_sentences)
# Extracting only the topic sentences for the radio button options
radio_options = [ts["topic-sentence"] for ts in topic_sentences_list]
# Creating the radio button element
topic_sentences_radio = gr.Radio(radio_options, label="Topic Sentences", elem_id="topic_sentence_button")
topic_sentences_suggestions = gr.HTML() # Setting up the action when a radio button is selected
topic_sentences_radio.select(
fn=update_topic_sentence_input,
inputs=[topic_sentences_radio, topic_sentence_output],
outputs= [topic_sentence_input, topic_sentences_suggestions]
)
return topic_sentences_radio
# Step 5.寫出完整段落
with gr.Row():
with gr.Column():
with gr.Row() as supporting_sentences_params:
default_generate_supporting_sentences_prompt = """
I'm aiming to improve my writing. I have a topic sentence as topic_sentence_input.
Please assist me by "Developing supporting detials" based on the keyword: points to write three sentences as an example.
Rules:
- Make sure any revised vocabulary aligns with the eng_level.
- Guidelines for Length and Complexity:
- Please keep the example concise and straightforward,
Restrictions:
- avoiding overly technical language.
- Total word-count is around 50. no more explanation either no more extra non-relation sentences.
EXAMPLE:
- Washing your hands often helps you stay healthy. It removes dirt and germs that can make you sick. Clean hands prevent the spread of diseases. You protect yourself and others by washing your hands regularly.
"""
user_generate_supporting_sentences_prompt = gr.Textbox(label="Supporting Sentences Prompt", value=default_generate_supporting_sentences_prompt, visible=False)
with gr.Row() as supporting_sentences_html:
gr.Markdown("# Step 5.寫出完整段落")
with gr.Row():
gr.Markdown("## 請根據主題句,練習寫出 「支持句」及「結論句」來完成一個完整的段落。")
with gr.Row():
with gr.Column():
gr.Markdown("### 支持句:以支持句來解釋要點,必要時舉例説明,來支持主題句。這些句子應該按照邏輯順序來組織,例如時間順序、空間順序、重要性順序、因果關係等。並使用轉折詞來引導讀者從一個 idea 到下一個 idea,讓讀者讀起來很順暢,不需反覆閱讀。")
with gr.Column():
with gr.Accordion("參考指引:撰寫支持句的方法?", open=False):
gr.Markdown("""
- Explanation 解釋説明:說明居住城市的優點,例如住在城市可享受便利的交通。
- Fact 陳述事實:説明運動可以增強心肺功能和肌肉力量,對於身體健康有正面影響。
- Cause and Effect 原因結果:解釋為何必須家事分工,例如家事分工更容易維護家庭環境的整齊清潔。
- Compare and Contrast 比較與對比:將主題與其他相關事物進行比較。例如比較傳統教學與線上學習。
- Incident 事件:利用事件來做説明。例如誤用表情符號造成困擾的事件,或葡式蛋塔風行的跟瘋事件。
- Evidence 提供證據:引用相關數據、研究或事實來佐證。例如全球互聯網用戶數已經突破了 50 億人,佔全球總人口近 65%。
- Example 舉例:舉自家為例,説明如何將家事的責任分配給每個家庭成員。
""")
with gr.Accordion("參考指引:針對要點的支持句,要寫幾句呢?", open=False):
gr.Markdown("""
- 一個要點,寫 3-6 句
- 兩個要點,每個要點寫 2-3 句
- 三個要點,每個要點寫 1-2 句
""")
with gr.Row():
with gr.Column():
gr.Markdown("### 寫出關於 focus 的支持句")
supporting_sentences_input = gr.Textbox(label="Supporting Sentences")
with gr.Column():
generate_supporting_sentences_button = gr.Button("讓 JUTOR 產生例句,幫助你撰寫支持句。", variant="primary")
supporting_sentences_output = gr.Radio(choices=[],label="AI Generated Supporting Sentences 支持句", elem_id="supporting_sentences_button")
supporting_sentences_output.select(
fn=update_supporting_sentences_input,
inputs=[supporting_sentences_output],
outputs= [supporting_sentences_input]
)
gr.Markdown("## 6. Conclusion sentence 結論句")
default_generate_conclusion_sentence_prompt = """
I'm aiming to improve my writing.
By the topic sentence, please assist me by "Developing conclusion sentences"
based on keywords of points to finish a paragrpah as an example.
- Make sure any revised vocabulary aligns with the correctly eng_level.
- Guidelines for Length and Complexity:
Please keep the example concise and straightforward,
avoiding overly technical language.
Total word-count is around 20.
"""
user_generate_conclusion_sentence_prompt = gr.Textbox(label="Conclusion Sentence Prompt", value=default_generate_conclusion_sentence_prompt, visible=False)
generate_conclusion_sentence_button = gr.Button("AI Generate Conclusion Sentence")
conclusion_sentence_output = gr.Textbox(label="AI Generated Conclusion Sentence 結論句", show_copy_button=True)
conclusion_sentence_input = gr.Textbox(label="Conclusion Sentence")
gr.Markdown("## 7. Paragraph Integration and Revision 段落確認與修訂")
generate_paragraph_button = gr.Button("Generate Paragraph")
paragraph_output = gr.Textbox(label="Generated Paragraph 完整段落", show_copy_button=True)
paragraph_input = gr.Textbox(label="Paragraph")
gr.Markdown("## 8. Evaluate 分析")
default_user_generate_paragraph_evaluate_prompt = """
Based on the final paragraph provided, evaluate the writing in terms of content, organization, grammar, and vocabulary. Provide feedback in simple and supportive language.
-- 根據上述的文章,以「內容(content)」層面評分。
- 評分等級有三級:beginner, intermediate, advanced. - 以繁體中文解釋
評分結果以 JSON 格式輸出: content: {
"content_level": "#beginner/intermediate/advanced",
"content_explanation": "#中文解釋"
}
-- 根據上述的文章,以「組織(organization)」層面評分。
- 評分等級有三級:beginner, intermediate, advanced. - 以繁體中文解釋
評分結果以 JSON 格式輸出: organization: {
"organization_level": "#beginner/intermediate/advanced",
"organization_explanation": "#中文解釋"
}
-- 根據上述的文章,以「文法和用法(Grammar and usage)」層面評分。
- 評分等級有三級:beginner, intermediate, advanced. - 以繁體中文解釋
評分結果以 JSON 格式輸出: grammar_and_usage: {
"GrammarAndUsage_level": "#beginner/intermediate/advanced",
"GrammarAndUsage_explanation": "#中文解釋"
}
-- 根據上述的文章,以「詞彙(Vocabulary )」層面評分。
- 評分等級有三級:beginner, intermediate, advanced. - 以繁體中文解釋
評分結果以 JSON 格式輸出: vocabulary: {
"Vocabulary_level": "#beginner/intermediate/advanced",
"Vocabulary_explanation": "#中文解釋"
}
-- 根據上述的文章,以「連貫性和連接詞(Coherence and Cohesion)」層面評分。
- 評分等級有三級:beginner, intermediate, advanced. - 以繁體中文解釋
評分結果以 JSON 格式輸出: coherence_and_cohesion: {
"CoherenceAndCohesion_level": "#beginner/intermediate/advanced",
"CoherenceAndCohesion_explanation": "#中文解釋"
}
將上述的輸出為 JSON:
{{
“content“: {content’s dict},
“organization“: {organization dict},
“grammar_and_usage“: {grammar_and_usage dict},
“vocabulary“: {vocabulary dict},
“coherence_and_cohesion“: {coherence_and_cohesion dict}
}}
"""
user_generate_paragraph_evaluate_prompt = gr.Textbox(label="Paragraph evaluate Prompt", value=default_user_generate_paragraph_evaluate_prompt, visible=False)
generate_paragraph_evaluate_button = gr.Button("Save and Evaluate")
paragraph_evaluate_output = gr.Textbox(label="Generated Paragraph evaluate 完整段落分析", show_copy_button=True)
gr.Markdown("## 9. Correct Grammatical and Spelling Errors 修訂文法與拼字錯誤")
default_user_correct_grammatical_spelling_errors_prompt = """
I'm aiming to improve my writing.
Please assist me by "Correcting Grammatical and Spelling Errors" in the provided paragraph.
For every correction you make, I'd like an "Explanation" to understand the reasoning behind it.
- Paragraph for Correction: [paragraph split by punctuation mark]
- The sentence to remain unchanged: [sentence_to_remain_unchanged]
- When explaining, use Traditional Chinese (Taiwan, 繁體中文) for clarity.
- But others(original, Correction, revised_paragraph) in English.
- Make sure any revised vocabulary aligns with the eng_level.
- Guidelines for Length and Complexity: Please keep explanations concise and straightforward,
- Avoiding overly technical language.
The response should strictly be in the below JSON format and nothing else:
{
"Corrections and Explanations": [
{ "original": "# original_sentence1", "Correction": "#correction_1", "Explanation": "#explanation_1(in_traditional_chinese)" },
{ "original": "# original_sentence2", "Correction": "#correction_2", "Explanation": "#explanation_2(in_traditional_chinese)" },
...
],
"Revised Paragraph": "#revised_paragraph"
}
"""
user_correct_grammatical_spelling_errors_prompt = gr.Textbox(label="Correct Grammatical and Spelling Errors Prompt", value=default_user_correct_grammatical_spelling_errors_prompt, visible=False)
generate_correct_grammatical_spelling_errors_button = gr.Button("Correct Grammatical and Spelling Errors")
correct_grammatical_spelling_errors_output = gr.Textbox(label="Correct Grammatical and Spelling Errors 修訂文法與拼字錯誤")
paragraph_correct_grammatical_spelling_errors_input = gr.Textbox(label="Paragraph")
gr.Markdown("## 10. Refine Paragraph 段落改善建議")
default_user_refine_paragraph_prompt = """
I need assistance with revising a paragraph. Please "Refine" the "Revised Version 1" and immediately "Provide Explanations" for each suggestion you made.
- Revised Version 1 (for correction): paragraph_ai_modification(split by punctuation mark)
- Do not modify the sentence: topicSentence"
- Make sure any revised vocabulary aligns with the eng_level.
- When explaining, use Traditional Chinese (Taiwan, 繁體中文) for clarity.
- But others(Origin, Suggestion, revised_paragraph_v2) use English, that's very important.
- Guidelines for Length and Complexity:
Please keep explanations concise and straightforward,
avoiding overly technical language.
The response should strictly be in the below JSON format and nothing else:
{
"Suggestions and Explanations": [
{ "Origin": "#original_text_1", "Suggestion": "#suggestion_1", "Explanation": "#explanation_1(in_traditional_chinese)" },
{ "Origin": "#original_text_2", "Suggestion": "#suggestion_2", "Explanation": "#explanation_2(in_traditional_chinese)" },
... ],
"Revised Paragraph": "#revised_paragraph_v2"
}
"""
user_refine_paragraph_prompt = gr.Textbox(label="Refine Paragraph Prompt", value=default_user_refine_paragraph_prompt, visible=False)
generate_refine_paragraph_button = gr.Button("Refine Paragraph")
refine_output = gr.Textbox(label="Refine Paragraph 段落改善建議", show_copy_button=True)
paragraph_refine_input = gr.Textbox(label="Paragraph 段落改善", show_copy_button=True)
gr.Markdown("## 11. Save and Share")
paragraph_save_button = gr.Button("Save and Share")
paragraph_save_output = gr.Textbox(label="Save and Share")
audio_output = gr.Audio(label="Generated Speech", type="filepath")
generate_topics_button.click(
fn=generate_topics,
inputs=[
model,
max_tokens,
sys_content_input,
scenario_input,
eng_level_input,
user_generate_topics_prompt
],
outputs=[topic_output]
)
generate_points_button.click(
fn=generate_points,
inputs=[
model,
max_tokens,
sys_content_input,
scenario_input,
eng_level_input,
topic_input,
user_generate_points_prompt
],
outputs=points_output
)
generate_topic_sentences_button.click(
fn=generate_topic_sentences,
inputs=[
model,
max_tokens,
sys_content_input,
scenario_input,
eng_level_input,
topic_input,
points_input,
user_generate_topic_sentences_prompt
],
outputs=topic_sentence_output
)
generate_supporting_sentences_button.click(
fn=generate_supporting_sentences,
inputs=[
model,
max_tokens,
sys_content_input,
scenario_input,
eng_level_input,
topic_input,
points_input,
topic_sentence_input,
user_generate_supporting_sentences_prompt
],
outputs=supporting_sentences_output
)
generate_conclusion_sentence_button.click(
fn=generate_conclusion_sentences,
inputs=[
model,
max_tokens,
sys_content_input,
scenario_input,
eng_level_input,
topic_input,
points_input,
topic_sentence_input,
user_generate_conclusion_sentence_prompt
],
outputs=conclusion_sentence_output
)
generate_paragraph_button.click(
fn=generate_paragraph,
inputs=[
topic_sentence_input,
supporting_sentences_input,
conclusion_sentence_input
],
outputs=paragraph_output
)
generate_paragraph_evaluate_button.click(
fn=generate_paragraph_evaluate,
inputs=[
paragraph_input,
user_generate_paragraph_evaluate_prompt
],
outputs=paragraph_evaluate_output
)
generate_correct_grammatical_spelling_errors_button.click(
fn=generate_correct_grammatical_spelling_errors,
inputs=[
eng_level_input,
paragraph_input,
user_correct_grammatical_spelling_errors_prompt
],
outputs=correct_grammatical_spelling_errors_output
)
generate_refine_paragraph_button.click(
fn=generate_refine_paragraph,
inputs=[
eng_level_input,
paragraph_correct_grammatical_spelling_errors_input,
user_refine_paragraph_prompt
],
outputs=refine_output
)
paragraph_save_button.click(
fn=paragraph_save_and_tts,
inputs=[
paragraph_refine_input
],
outputs=[
paragraph_save_output,
audio_output
]
)
demo.launch()
|