Spaces:
Sleeping
Sleeping
File size: 6,575 Bytes
968db8f e8c1be7 4754d23 78a1c85 968db8f b5efa21 968db8f 86e761a e8c1be7 968db8f 4754d23 91513d8 fc16e41 91513d8 4754d23 968db8f 78a1c85 968db8f 78a1c85 968db8f ae1f4a3 968db8f 930c56c 968db8f 930c56c 968db8f eb776f5 930c56c 475a393 968db8f e8c1be7 968db8f 930c56c 968db8f 930c56c a5d0004 930c56c 968db8f 930c56c 968db8f 308f945 968db8f 930c56c 968db8f 308f945 968db8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
import json
import requests
class Chatbot:
def __init__(self, config):
self.video_id = config.get('video_id')
self.content_subject = config.get('content_subject')
self.content_grade = config.get('content_grade')
self.jutor_chat_key = config.get('jutor_chat_key')
self.transcript_text = self.get_transcript_text(config.get('transcript'))
self.key_moments_text = self.get_key_moments_text(config.get('key_moments'))
self.ai_model_name = config.get('ai_model_name')
self.ai_client = config.get('ai_client')
self.instructions = config.get('instructions')
def get_transcript_text(self, transcript_data):
if isinstance(transcript_data, str):
transcript_json = json.loads(transcript_data)
else:
transcript_json = transcript_data
for entry in transcript_json:
entry.pop('end_time', None)
transcript_text = json.dumps(transcript_json, ensure_ascii=False)
return transcript_text
def get_key_moments_text(self, key_moments_data):
if isinstance(key_moments_data, str):
key_moments_json = json.loads(key_moments_data)
else:
key_moments_json = key_moments_data
# key_moments_json remove images
for moment in key_moments_json:
moment.pop('images', None)
moment.pop('end', None)
moment.pop('transcript', None)
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False)
return key_moments_text
def chat(self, user_message, chat_history):
try:
messages = self.prepare_messages(chat_history, user_message)
system_prompt = self.instructions
service_type = self.ai_model_name
response_text = self.chat_with_service(service_type, system_prompt, messages)
except Exception as e:
print(f"Error: {e}")
response_text = "學習精靈有點累,請稍後再試!"
return response_text
def prepare_messages(self, chat_history, user_message):
messages = []
if chat_history is not None:
if len(chat_history) > 10:
chat_history = chat_history[-10:]
for user_msg, assistant_msg in chat_history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
if user_message:
user_message += "/n (請一定要用繁體中文回答 zh-TW,並用台灣人的禮貌口語表達,回答時不要特別說明這是台灣人的語氣,不要提到「台灣腔」,不用提到「逐字稿」這個詞,用「內容」代替),回答時如果有用到數學式,請用數學符號代替純文字(Latex 用 $ 字號 render)"
messages.append({"role": "user", "content": user_message})
return messages
def chat_with_service(self, service_type, system_prompt, messages):
if service_type == 'openai':
return self.chat_with_jutor(system_prompt, messages)
elif service_type == 'groq_llama3':
return self.chat_with_groq(service_type, system_prompt, messages)
elif service_type == 'groq_mixtral':
return self.chat_with_groq(service_type, system_prompt, messages)
elif service_type == 'claude3':
return self.chat_with_claude3(system_prompt, messages)
else:
raise gr.Error("不支持的服务类型")
def chat_with_jutor(self, system_prompt, messages):
messages.insert(0, {"role": "system", "content": system_prompt})
api_endpoint = "https://ci-live-feat-video-ai-dot-junyiacademy.appspot.com/api/v2/jutor/hf-chat"
headers = {
"Content-Type": "application/json",
"x-api-key": self.jutor_chat_key,
}
model = "gpt-4o"
print("======model======")
print(model)
# model = "gpt-3.5-turbo-0125"
data = {
"data": {
"messages": messages,
"max_tokens": 512,
"temperature": 0.9,
"model": model,
"stream": False,
}
}
response = requests.post(api_endpoint, headers=headers, data=json.dumps(data))
response_data = response.json()
response_completion = response_data['data']['choices'][0]['message']['content'].strip()
return response_completion
def chat_with_groq(self, model_name, system_prompt, messages):
# system_prompt insert to messages 的最前面 {"role": "system", "content": system_prompt}
messages.insert(0, {"role": "system", "content": system_prompt})
model_name_dict = {
"groq_llama3": "llama-3.1-70b-versatile",
"groq_mixtral": "mixtral-8x7b-32768"
}
model = model_name_dict.get(model_name)
print("======model======")
print(model)
request_payload = {
"model": model,
"messages": messages,
"max_tokens": 500 # 設定一個較大的值,可根據需要調整
}
groq_client = self.ai_client
response = groq_client.chat.completions.create(**request_payload)
response_completion = response.choices[0].message.content.strip()
return response_completion
def chat_with_claude3(self, system_prompt, messages):
if not system_prompt.strip():
raise ValueError("System prompt cannot be empty")
model_id = "anthropic.claude-3-sonnet-20240229-v1:0"
# model_id = "anthropic.claude-3-haiku-20240307-v1:0"
print("======model_id======")
print(model_id)
kwargs = {
"modelId": model_id,
"contentType": "application/json",
"accept": "application/json",
"body": json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 500,
"system": system_prompt,
"messages": messages
})
}
# 建立 message API,讀取回應
bedrock_client = self.ai_client
response = bedrock_client.invoke_model(**kwargs)
response_body = json.loads(response.get('body').read())
response_completion = response_body.get('content')[0].get('text').strip()
return response_completion
|