File size: 14,240 Bytes
968db8f
 
 
dc93d53
968db8f
 
 
 
 
 
 
e8c1be7
4754d23
78a1c85
968db8f
b5efa21
968db8f
 
86e761a
 
 
 
e8c1be7
 
968db8f
 
4754d23
 
 
 
 
 
91513d8
 
 
fc16e41
 
91513d8
4754d23
 
 
968db8f
78a1c85
 
 
 
dc93d53
78a1c85
968db8f
dc93d53
78a1c85
 
 
 
 
968db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1f4a3
968db8f
 
 
 
930c56c
968db8f
930c56c
 
 
 
968db8f
 
dc93d53
 
968db8f
 
 
 
 
 
 
 
 
 
eb776f5
930c56c
 
968db8f
 
 
 
 
e8c1be7
968db8f
 
 
 
 
 
 
 
 
930c56c
968db8f
 
930c56c
a5d0004
930c56c
 
 
 
 
 
968db8f
930c56c
968db8f
308f945
968db8f
 
 
 
 
 
 
 
 
 
 
 
930c56c
 
968db8f
 
 
 
 
 
308f945
968db8f
 
 
 
 
 
 
 
 
 
ebf8f0c
dc93d53
 
ebf8f0c
 
 
dc93d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf8f0c
 
dc93d53
 
 
ebf8f0c
 
 
dc93d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf8f0c
 
dc93d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf8f0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import gradio as gr
import json
import requests
import re

class Chatbot:
    def __init__(self, config):
        self.video_id = config.get('video_id')
        self.content_subject = config.get('content_subject')
        self.content_grade = config.get('content_grade')
        self.jutor_chat_key = config.get('jutor_chat_key')
        self.transcript_text = self.get_transcript_text(config.get('transcript'))
        self.key_moments_text = self.get_key_moments_text(config.get('key_moments'))
        self.ai_model_name = config.get('ai_model_name')
        self.ai_client = config.get('ai_client')
        self.instructions = config.get('instructions')

    def get_transcript_text(self, transcript_data):
        if isinstance(transcript_data, str):
            transcript_json = json.loads(transcript_data)
        else:
            transcript_json = transcript_data
        for entry in transcript_json:
            entry.pop('end_time', None)
        transcript_text = json.dumps(transcript_json, ensure_ascii=False)
        return transcript_text
    
    def get_key_moments_text(self, key_moments_data):
        if isinstance(key_moments_data, str):
            key_moments_json = json.loads(key_moments_data)
        else:
            key_moments_json = key_moments_data
        # key_moments_json remove images
        for moment in key_moments_json:
            moment.pop('images', None)
            moment.pop('end', None)
            moment.pop('transcript', None)
            
        key_moments_text = json.dumps(key_moments_json, ensure_ascii=False)
        return key_moments_text


    def chat(self, user_message, chat_history):
        try:
            messages = self.prepare_messages(chat_history, user_message)
            system_prompt = self.instructions
            system_prompt += "\n\n告知用戶你現在是誰,第一次加上科目學伴及名字,後面就只說名字就好,但不用每次都說,自然就好,不用每一句都特別說明,口氣請符合給予的人設,請用繁體中文回答"
            service_type = self.ai_model_name
            response_text = self.chat_with_service(service_type, system_prompt, messages)

        except Exception as e:
            print(f"Error: {e}")
            response_text = "學習精靈有點累,請稍後再試!"

        return response_text

    def prepare_messages(self, chat_history, user_message):
        messages = []
        if chat_history is not None:
            if len(chat_history) > 10:
                chat_history = chat_history[-10:]

            for user_msg, assistant_msg in chat_history:
                if user_msg:
                    messages.append({"role": "user", "content": user_msg})
                if assistant_msg:
                    messages.append({"role": "assistant", "content": assistant_msg})
                
        if user_message:
            user_message += "/n (請一定要用繁體中文回答 zh-TW,並用台灣人的禮貌口語表達,回答時不要特別說明這是台灣人的語氣,不要提到「台灣腔」,不用提到「逐字稿」這個詞,用「內容」代替),回答時如果有用到數學式,請用數學符號代替純文字(Latex 用 $ 字號 render)"
            messages.append({"role": "user", "content": user_message})
        return messages

    def chat_with_service(self, service_type, system_prompt, messages):
        if service_type == 'openai':
            return self.chat_with_jutor(system_prompt, messages)
        elif service_type == 'groq_llama3':
            return self.chat_with_groq(service_type, system_prompt, messages)
        elif service_type == 'groq_mixtral':
            return self.chat_with_groq(service_type, system_prompt, messages)
        elif service_type == 'claude3':
            return self.chat_with_claude3(system_prompt, messages)
        elif service_type in ['perplexity_sonar', 'perplexity_sonar_pro', 'perplexity_r1_1776']:
            return self.chat_with_perplexity(service_type, system_prompt, messages)
        else:
            raise gr.Error("不支持的服务类型")

    def chat_with_jutor(self, system_prompt, messages):
        messages.insert(0, {"role": "system", "content": system_prompt})
        api_endpoint = "https://ci-live-feat-video-ai-dot-junyiacademy.appspot.com/api/v2/jutor/hf-chat"
        headers = {
            "Content-Type": "application/json",
            "x-api-key": self.jutor_chat_key,
        }
        model = "gpt-4o"
        print("======model======")
        print(model)
        data = {
            "data": {
                "messages": messages,
                "max_tokens": 512,
                "temperature": 0.9,
                "model": model,
                "stream": False,
            }
        }

        response = requests.post(api_endpoint, headers=headers, data=json.dumps(data))
        response_data = response.json()
        response_completion = response_data['data']['choices'][0]['message']['content'].strip()
        return response_completion

    def chat_with_groq(self, model_name, system_prompt, messages):
        # system_prompt insert to messages 的最前面 {"role": "system", "content": system_prompt}
        messages.insert(0, {"role": "system", "content": system_prompt})
        model_name_dict = {
            "groq_llama3": "llama-3.1-70b-versatile",
            "groq_mixtral": "mixtral-8x7b-32768"
        }
        model = model_name_dict.get(model_name)
        print("======model======")
        print(model)

        request_payload = {
            "model": model,
            "messages": messages,
            "max_tokens": 500  # 設定一個較大的值,可根據需要調整
        }
        groq_client = self.ai_client
        response = groq_client.chat.completions.create(**request_payload)
        response_completion = response.choices[0].message.content.strip()
        return response_completion

    def chat_with_claude3(self, system_prompt, messages):
        if not system_prompt.strip():
            raise ValueError("System prompt cannot be empty")
        
        model_id = "anthropic.claude-3-sonnet-20240229-v1:0"
        # model_id = "anthropic.claude-3-haiku-20240307-v1:0"
        print("======model_id======")
        print(model_id)
        kwargs = {
            "modelId": model_id,
            "contentType": "application/json",
            "accept": "application/json",
            "body": json.dumps({
                "anthropic_version": "bedrock-2023-05-31",
                "max_tokens": 500,
                "system": system_prompt,
                "messages": messages
            })
        }
        # 建立 message API,讀取回應
        bedrock_client = self.ai_client
        response = bedrock_client.invoke_model(**kwargs)
        response_body = json.loads(response.get('body').read())
        response_completion = response_body.get('content')[0].get('text').strip()
        return response_completion

    def chat_with_perplexity(self, service_type, system_prompt, messages):
        """使用 Perplexity API 進行對話"""
        if not system_prompt.strip():
            raise ValueError("System prompt cannot be empty")
        
        # 清理用戶訊息中的特殊指令
        for msg in messages:
            if msg["role"] == "user":
                # 移除可能導致問題的特殊指令
                msg["content"] = msg["content"].replace("/n", "\n")
                # 移除括號內的特殊指令
                msg["content"] = re.sub(r'\(請一定要用繁體中文回答.*?\)', '', msg["content"])
        
        # 系統提示放在最前面
        clean_messages = [{"role": "system", "content": system_prompt}]
        # 添加其他訊息
        for msg in messages:
            if msg["role"] != "system":  # 避免重複添加系統提示
                clean_messages.append(msg)
        
        # 在系統提示中添加 Markdown 和 LaTeX 格式指導
        system_prompt += "\n\n重要:使用 LaTeX 數學符號時,請確保格式正確。數學表達式應該使用 $ 符號包圍,例如:$7 \\times 10^4$。不要使用 ** 符號來強調數字,而是使用 $ 符號,例如:$7$個萬 ($7 \\times 10000$)。不要使用 \\text 或 \\quad 等命令。"

        # 根據服務類型選擇模型
        model_name_dict = {
            "perplexity_sonar": "sonar",
            "perplexity_sonar_pro": "sonar-pro",
            "perplexity_r1_1776": "r1-1776"
        }
        model = model_name_dict.get(service_type, "sonar")
        
        print("======model======")
        print(model)
        print("======clean_messages======")
        print(json.dumps(clean_messages[:1], ensure_ascii=False))  # 只打印系統提示的前部分
        
        try:
            perplexity_client = self.ai_client
            
            # 針對 r1-1776 模型調整參數
            if service_type == "perplexity_r1_1776":
                # 增加 max_tokens 並添加特殊指令
                response = perplexity_client.chat.completions.create(
                    model=model,
                    messages=clean_messages,
                    max_tokens=1000,  # 增加 token 限制
                    temperature=0.7,
                    top_p=0.9
                )
            else:
                response = perplexity_client.chat.completions.create(
                    model=model,
                    messages=clean_messages,
                    max_tokens=500,
                    temperature=0.7,
                    top_p=0.9
                )
            
            # 檢查回應是否為空
            if not hasattr(response, 'choices') or len(response.choices) == 0:
                print("警告:API 回傳無效回應結構")
                return "學習精靈暫時無法回答,請稍後再試!"
            
            response_completion = response.choices[0].message.content
            if not response_completion or response_completion.strip() == "":
                print("警告:API 回傳空回應")
                return "學習精靈暫時無法回答,請稍後再試!"
            
            # 處理回應中的思考過程標籤和修正 LaTeX 格式
            response_completion = self._process_response(response_completion)
            
            # 打印處理後的回應以便調試
            print("======processed_response======")
            print(response_completion)
            
            return response_completion.strip()
            
        except Exception as e:
            print(f"Perplexity API Error: {e}")
            print(f"Error details: {str(e)}")
            # 嘗試使用備用模型
            try:
                if service_type == "perplexity_r1_1776":
                    print("嘗試使用備用模型 sonar")
                    backup_response = perplexity_client.chat.completions.create(
                        model="sonar",
                        messages=clean_messages,
                        max_tokens=500,
                        temperature=0.7
                    )
                    backup_completion = backup_response.choices[0].message.content
                    backup_completion = self._process_response(backup_completion)
                    return backup_completion.strip()
            except Exception as backup_error:
                print(f"備用模型也失敗: {backup_error}")
            
            return "學習精靈暫時無法回答,請稍後再試!"

    def _process_response(self, response_text):
        """處理回應中的思考過程標籤和修正 LaTeX 格式"""
        # 移除 <think>...</think> 區塊
        import re
        response_text = re.sub(r'<think>.*?</think>', '', response_text, flags=re.DOTALL)
        
        # 移除其他可能的標籤或指令
        response_text = re.sub(r'(偷偷說.*?)', '', response_text, flags=re.DOTALL)
        
        # 修正 Markdown 格式
        # 1. 確保項目符號前後有正確的空格和換行
        response_text = re.sub(r'(\n|^)(\s*)([-•○●◦])\s*', r'\1\2\3 ', response_text)
        
        # 2. 確保數字列表前後有正確的空格和換行
        response_text = re.sub(r'(\n|^)(\s*)(\d+\.)\s*', r'\1\2\3 ', response_text)
        
        # 3. 修正 LaTeX 格式
        # 移除不正確的 LaTeX 命令
        response_text = re.sub(r'\\text\{([^}]+)\}', r'\1', response_text)
        response_text = re.sub(r'\\quad', ' ', response_text)
        
        # 4. 修正數學表達式
        # 確保數學表達式中的乘法符號格式正確
        response_text = re.sub(r'(\d+)個「([^」]+)」→\s*(\d+)\\times(\d+)', r'\1個「\2」→ $\3\\times\4$', response_text)
        
        # 5. 修正單獨數字的 LaTeX 格式
        # 將單獨的數字包裹在 $ 符號中
        response_text = re.sub(r'([^$\d])(\d+)([^$\d\w])', r'\1$\2$\3', response_text)
        
        # 6. 修正連續的 LaTeX 表達式
        # 確保連續的 LaTeX 表達式之間有空格
        response_text = re.sub(r'\$([^$]+)\$\$([^$]+)\$', r'$\1$ $\2$', response_text)
        
        # 7. 移除單獨的 $ 符號
        response_text = re.sub(r'(?<!\$)\$(?!\$)\s*$', '', response_text)
        response_text = re.sub(r'^\s*\$(?!\$)', '', response_text)
        response_text = re.sub(r'(?<!\$)\$(?!\$)\s*\n', '\n', response_text)
        
        # 8. 確保成對的 $ 符號
        dollar_count = response_text.count('$')
        if dollar_count % 2 != 0:
            # 如果 $ 符號數量為奇數,移除最後一個 $
            last_dollar_pos = response_text.rfind('$')
            if last_dollar_pos != -1:
                response_text = response_text[:last_dollar_pos] + response_text[last_dollar_pos+1:]
        
        # 9. 修正錯誤的粗體標記
        # 將 **數字** 格式修正為正確的數字格式
        response_text = re.sub(r'\*\*(\d+)\*\*', r'$\1$', response_text)
        
        # 如果處理後的回應為空,返回原始回應
        if not response_text.strip():
            return "學習精靈暫時無法回答,請稍後再試!"
        
        return response_text