Spaces:
Sleeping
Sleeping
File size: 14,240 Bytes
968db8f dc93d53 968db8f e8c1be7 4754d23 78a1c85 968db8f b5efa21 968db8f 86e761a e8c1be7 968db8f 4754d23 91513d8 fc16e41 91513d8 4754d23 968db8f 78a1c85 dc93d53 78a1c85 968db8f dc93d53 78a1c85 968db8f ae1f4a3 968db8f 930c56c 968db8f 930c56c 968db8f dc93d53 968db8f eb776f5 930c56c 968db8f e8c1be7 968db8f 930c56c 968db8f 930c56c a5d0004 930c56c 968db8f 930c56c 968db8f 308f945 968db8f 930c56c 968db8f 308f945 968db8f ebf8f0c dc93d53 ebf8f0c dc93d53 ebf8f0c dc93d53 ebf8f0c dc93d53 ebf8f0c dc93d53 ebf8f0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import gradio as gr
import json
import requests
import re
class Chatbot:
def __init__(self, config):
self.video_id = config.get('video_id')
self.content_subject = config.get('content_subject')
self.content_grade = config.get('content_grade')
self.jutor_chat_key = config.get('jutor_chat_key')
self.transcript_text = self.get_transcript_text(config.get('transcript'))
self.key_moments_text = self.get_key_moments_text(config.get('key_moments'))
self.ai_model_name = config.get('ai_model_name')
self.ai_client = config.get('ai_client')
self.instructions = config.get('instructions')
def get_transcript_text(self, transcript_data):
if isinstance(transcript_data, str):
transcript_json = json.loads(transcript_data)
else:
transcript_json = transcript_data
for entry in transcript_json:
entry.pop('end_time', None)
transcript_text = json.dumps(transcript_json, ensure_ascii=False)
return transcript_text
def get_key_moments_text(self, key_moments_data):
if isinstance(key_moments_data, str):
key_moments_json = json.loads(key_moments_data)
else:
key_moments_json = key_moments_data
# key_moments_json remove images
for moment in key_moments_json:
moment.pop('images', None)
moment.pop('end', None)
moment.pop('transcript', None)
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False)
return key_moments_text
def chat(self, user_message, chat_history):
try:
messages = self.prepare_messages(chat_history, user_message)
system_prompt = self.instructions
system_prompt += "\n\n告知用戶你現在是誰,第一次加上科目學伴及名字,後面就只說名字就好,但不用每次都說,自然就好,不用每一句都特別說明,口氣請符合給予的人設,請用繁體中文回答"
service_type = self.ai_model_name
response_text = self.chat_with_service(service_type, system_prompt, messages)
except Exception as e:
print(f"Error: {e}")
response_text = "學習精靈有點累,請稍後再試!"
return response_text
def prepare_messages(self, chat_history, user_message):
messages = []
if chat_history is not None:
if len(chat_history) > 10:
chat_history = chat_history[-10:]
for user_msg, assistant_msg in chat_history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
if user_message:
user_message += "/n (請一定要用繁體中文回答 zh-TW,並用台灣人的禮貌口語表達,回答時不要特別說明這是台灣人的語氣,不要提到「台灣腔」,不用提到「逐字稿」這個詞,用「內容」代替),回答時如果有用到數學式,請用數學符號代替純文字(Latex 用 $ 字號 render)"
messages.append({"role": "user", "content": user_message})
return messages
def chat_with_service(self, service_type, system_prompt, messages):
if service_type == 'openai':
return self.chat_with_jutor(system_prompt, messages)
elif service_type == 'groq_llama3':
return self.chat_with_groq(service_type, system_prompt, messages)
elif service_type == 'groq_mixtral':
return self.chat_with_groq(service_type, system_prompt, messages)
elif service_type == 'claude3':
return self.chat_with_claude3(system_prompt, messages)
elif service_type in ['perplexity_sonar', 'perplexity_sonar_pro', 'perplexity_r1_1776']:
return self.chat_with_perplexity(service_type, system_prompt, messages)
else:
raise gr.Error("不支持的服务类型")
def chat_with_jutor(self, system_prompt, messages):
messages.insert(0, {"role": "system", "content": system_prompt})
api_endpoint = "https://ci-live-feat-video-ai-dot-junyiacademy.appspot.com/api/v2/jutor/hf-chat"
headers = {
"Content-Type": "application/json",
"x-api-key": self.jutor_chat_key,
}
model = "gpt-4o"
print("======model======")
print(model)
data = {
"data": {
"messages": messages,
"max_tokens": 512,
"temperature": 0.9,
"model": model,
"stream": False,
}
}
response = requests.post(api_endpoint, headers=headers, data=json.dumps(data))
response_data = response.json()
response_completion = response_data['data']['choices'][0]['message']['content'].strip()
return response_completion
def chat_with_groq(self, model_name, system_prompt, messages):
# system_prompt insert to messages 的最前面 {"role": "system", "content": system_prompt}
messages.insert(0, {"role": "system", "content": system_prompt})
model_name_dict = {
"groq_llama3": "llama-3.1-70b-versatile",
"groq_mixtral": "mixtral-8x7b-32768"
}
model = model_name_dict.get(model_name)
print("======model======")
print(model)
request_payload = {
"model": model,
"messages": messages,
"max_tokens": 500 # 設定一個較大的值,可根據需要調整
}
groq_client = self.ai_client
response = groq_client.chat.completions.create(**request_payload)
response_completion = response.choices[0].message.content.strip()
return response_completion
def chat_with_claude3(self, system_prompt, messages):
if not system_prompt.strip():
raise ValueError("System prompt cannot be empty")
model_id = "anthropic.claude-3-sonnet-20240229-v1:0"
# model_id = "anthropic.claude-3-haiku-20240307-v1:0"
print("======model_id======")
print(model_id)
kwargs = {
"modelId": model_id,
"contentType": "application/json",
"accept": "application/json",
"body": json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 500,
"system": system_prompt,
"messages": messages
})
}
# 建立 message API,讀取回應
bedrock_client = self.ai_client
response = bedrock_client.invoke_model(**kwargs)
response_body = json.loads(response.get('body').read())
response_completion = response_body.get('content')[0].get('text').strip()
return response_completion
def chat_with_perplexity(self, service_type, system_prompt, messages):
"""使用 Perplexity API 進行對話"""
if not system_prompt.strip():
raise ValueError("System prompt cannot be empty")
# 清理用戶訊息中的特殊指令
for msg in messages:
if msg["role"] == "user":
# 移除可能導致問題的特殊指令
msg["content"] = msg["content"].replace("/n", "\n")
# 移除括號內的特殊指令
msg["content"] = re.sub(r'\(請一定要用繁體中文回答.*?\)', '', msg["content"])
# 系統提示放在最前面
clean_messages = [{"role": "system", "content": system_prompt}]
# 添加其他訊息
for msg in messages:
if msg["role"] != "system": # 避免重複添加系統提示
clean_messages.append(msg)
# 在系統提示中添加 Markdown 和 LaTeX 格式指導
system_prompt += "\n\n重要:使用 LaTeX 數學符號時,請確保格式正確。數學表達式應該使用 $ 符號包圍,例如:$7 \\times 10^4$。不要使用 ** 符號來強調數字,而是使用 $ 符號,例如:$7$個萬 ($7 \\times 10000$)。不要使用 \\text 或 \\quad 等命令。"
# 根據服務類型選擇模型
model_name_dict = {
"perplexity_sonar": "sonar",
"perplexity_sonar_pro": "sonar-pro",
"perplexity_r1_1776": "r1-1776"
}
model = model_name_dict.get(service_type, "sonar")
print("======model======")
print(model)
print("======clean_messages======")
print(json.dumps(clean_messages[:1], ensure_ascii=False)) # 只打印系統提示的前部分
try:
perplexity_client = self.ai_client
# 針對 r1-1776 模型調整參數
if service_type == "perplexity_r1_1776":
# 增加 max_tokens 並添加特殊指令
response = perplexity_client.chat.completions.create(
model=model,
messages=clean_messages,
max_tokens=1000, # 增加 token 限制
temperature=0.7,
top_p=0.9
)
else:
response = perplexity_client.chat.completions.create(
model=model,
messages=clean_messages,
max_tokens=500,
temperature=0.7,
top_p=0.9
)
# 檢查回應是否為空
if not hasattr(response, 'choices') or len(response.choices) == 0:
print("警告:API 回傳無效回應結構")
return "學習精靈暫時無法回答,請稍後再試!"
response_completion = response.choices[0].message.content
if not response_completion or response_completion.strip() == "":
print("警告:API 回傳空回應")
return "學習精靈暫時無法回答,請稍後再試!"
# 處理回應中的思考過程標籤和修正 LaTeX 格式
response_completion = self._process_response(response_completion)
# 打印處理後的回應以便調試
print("======processed_response======")
print(response_completion)
return response_completion.strip()
except Exception as e:
print(f"Perplexity API Error: {e}")
print(f"Error details: {str(e)}")
# 嘗試使用備用模型
try:
if service_type == "perplexity_r1_1776":
print("嘗試使用備用模型 sonar")
backup_response = perplexity_client.chat.completions.create(
model="sonar",
messages=clean_messages,
max_tokens=500,
temperature=0.7
)
backup_completion = backup_response.choices[0].message.content
backup_completion = self._process_response(backup_completion)
return backup_completion.strip()
except Exception as backup_error:
print(f"備用模型也失敗: {backup_error}")
return "學習精靈暫時無法回答,請稍後再試!"
def _process_response(self, response_text):
"""處理回應中的思考過程標籤和修正 LaTeX 格式"""
# 移除 <think>...</think> 區塊
import re
response_text = re.sub(r'<think>.*?</think>', '', response_text, flags=re.DOTALL)
# 移除其他可能的標籤或指令
response_text = re.sub(r'(偷偷說.*?)', '', response_text, flags=re.DOTALL)
# 修正 Markdown 格式
# 1. 確保項目符號前後有正確的空格和換行
response_text = re.sub(r'(\n|^)(\s*)([-•○●◦])\s*', r'\1\2\3 ', response_text)
# 2. 確保數字列表前後有正確的空格和換行
response_text = re.sub(r'(\n|^)(\s*)(\d+\.)\s*', r'\1\2\3 ', response_text)
# 3. 修正 LaTeX 格式
# 移除不正確的 LaTeX 命令
response_text = re.sub(r'\\text\{([^}]+)\}', r'\1', response_text)
response_text = re.sub(r'\\quad', ' ', response_text)
# 4. 修正數學表達式
# 確保數學表達式中的乘法符號格式正確
response_text = re.sub(r'(\d+)個「([^」]+)」→\s*(\d+)\\times(\d+)', r'\1個「\2」→ $\3\\times\4$', response_text)
# 5. 修正單獨數字的 LaTeX 格式
# 將單獨的數字包裹在 $ 符號中
response_text = re.sub(r'([^$\d])(\d+)([^$\d\w])', r'\1$\2$\3', response_text)
# 6. 修正連續的 LaTeX 表達式
# 確保連續的 LaTeX 表達式之間有空格
response_text = re.sub(r'\$([^$]+)\$\$([^$]+)\$', r'$\1$ $\2$', response_text)
# 7. 移除單獨的 $ 符號
response_text = re.sub(r'(?<!\$)\$(?!\$)\s*$', '', response_text)
response_text = re.sub(r'^\s*\$(?!\$)', '', response_text)
response_text = re.sub(r'(?<!\$)\$(?!\$)\s*\n', '\n', response_text)
# 8. 確保成對的 $ 符號
dollar_count = response_text.count('$')
if dollar_count % 2 != 0:
# 如果 $ 符號數量為奇數,移除最後一個 $
last_dollar_pos = response_text.rfind('$')
if last_dollar_pos != -1:
response_text = response_text[:last_dollar_pos] + response_text[last_dollar_pos+1:]
# 9. 修正錯誤的粗體標記
# 將 **數字** 格式修正為正確的數字格式
response_text = re.sub(r'\*\*(\d+)\*\*', r'$\1$', response_text)
# 如果處理後的回應為空,返回原始回應
if not response_text.strip():
return "學習精靈暫時無法回答,請稍後再試!"
return response_text
|