Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import requests | |
from bs4 import BeautifulSoup | |
from docx import Document | |
import os | |
from openai import OpenAI | |
import json | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from youtube_transcript_api._errors import NoTranscriptFound | |
from moviepy.editor import VideoFileClip | |
from pytube import YouTube | |
import os | |
from google.oauth2 import service_account | |
from googleapiclient.discovery import build | |
from googleapiclient.http import MediaFileUpload | |
from googleapiclient.http import MediaIoBaseDownload | |
from googleapiclient.http import MediaIoBaseUpload | |
import io | |
from urllib.parse import urlparse, parse_qs | |
# 假设您的环境变量或Secret的名称是GOOGLE_APPLICATION_CREDENTIALS_JSON | |
# credentials_json_string = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") | |
# credentials_dict = json.loads(credentials_json_string) | |
# SCOPES = ['https://www.googleapis.com/auth/drive'] | |
# credentials = service_account.Credentials.from_service_account_info( | |
# credentials_dict, scopes=SCOPES) | |
# service = build('drive', 'v3', credentials=credentials) | |
# # 列出 Google Drive 上的前10個文件 | |
# results = service.files().list(pageSize=10, fields="nextPageToken, files(id, name)").execute() | |
# items = results.get('files', []) | |
# if not items: | |
# print('No files found.') | |
# else: | |
# print("=====Google Drive 上的前10個文件=====") | |
# print('Files:') | |
# for item in items: | |
# print(u'{0} ({1})'.format(item['name'], item['id'])) | |
OUTPUT_PATH = 'videos' | |
TRANSCRIPTS = [] | |
OPEN_AI_KEY = os.getenv("OPEN_AI_KEY") | |
client = OpenAI(api_key=OPEN_AI_KEY) | |
# # ====drive====初始化Google Drive服务 | |
def init_drive_service(): | |
credentials_json_string = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") | |
credentials_dict = json.loads(credentials_json_string) | |
SCOPES = ['https://www.googleapis.com/auth/drive'] | |
credentials = service_account.Credentials.from_service_account_info( | |
credentials_dict, scopes=SCOPES) | |
service = build('drive', 'v3', credentials=credentials) | |
return service | |
def create_folder_if_not_exists(service, folder_name, parent_id): | |
print("检查是否存在特定名称的文件夹,如果不存在则创建") | |
query = f"mimeType='application/vnd.google-apps.folder' and name='{folder_name}' and '{parent_id}' in parents and trashed=false" | |
response = service.files().list(q=query, spaces='drive', fields="files(id, name)").execute() | |
folders = response.get('files', []) | |
if not folders: | |
# 文件夹不存在,创建新文件夹 | |
file_metadata = { | |
'name': folder_name, | |
'mimeType': 'application/vnd.google-apps.folder', | |
'parents': [parent_id] | |
} | |
folder = service.files().create(body=file_metadata, fields='id').execute() | |
return folder.get('id') | |
else: | |
# 文件夹已存在 | |
return folders[0]['id'] | |
# 检查Google Drive上是否存在文件 | |
def check_file_exists(service, folder_name, file_name): | |
query = f"name = '{file_name}' and '{folder_name}' in parents and trashed = false" | |
response = service.files().list(q=query).execute() | |
files = response.get('files', []) | |
return len(files) > 0, files[0]['id'] if files else None | |
def upload_to_drive(service, file_name, folder_id, content): | |
print("上传文本内容到Google Drive指定的文件夹中") | |
# 如果您的内容是字符串(文本),请使用io.StringIO | |
# 对于二进制内容,请使用io.BytesIO | |
file_metadata = {'name': file_name, 'parents': [folder_id]} | |
# 这里我们假定content是文本,因此使用io.StringIO | |
media = MediaFileUpload(io.StringIO(content), mimetype='text/plain') | |
service.files().create(body=file_metadata, media_body=media, fields='id').execute() | |
def upload_content_directly(service, file_name, folder_id, content): | |
""" | |
直接将内容上传到Google Drive中的新文件。 | |
""" | |
file_metadata = {'name': file_name, 'parents': [folder_id]} | |
# 使用io.StringIO为文本内容创建一个内存中的文件对象 | |
fh = io.BytesIO(content.encode('utf-8')) | |
media = MediaIoBaseUpload(fh, mimetype='text/plain', resumable=True) | |
# 执行上传 | |
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute() | |
return file.get('id') | |
def download_file_as_string(service, file_id): | |
""" | |
从Google Drive下载文件并将其作为字符串返回。 | |
""" | |
request = service.files().get_media(fileId=file_id) | |
fh = io.BytesIO() | |
downloader = MediaIoBaseDownload(fh, request) | |
done = False | |
while done is False: | |
status, done = downloader.next_chunk() | |
fh.seek(0) | |
content = fh.read().decode('utf-8') | |
return content | |
def upload_img_directly(service, file_name, folder_id, file_path): | |
file_metadata = {'name': file_name, 'parents': [folder_id]} | |
media = MediaFileUpload(file_path, mimetype='image/jpeg') | |
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute() | |
return file.get('id') # 返回文件ID | |
def set_public_permission(service, file_id): | |
service.permissions().create( | |
fileId=file_id, | |
body={"type": "anyone", "role": "reader"}, | |
fields='id', | |
).execute() | |
def update_file_on_drive(service, file_id, file_content): | |
""" | |
更新Google Drive上的文件内容。 | |
参数: | |
- service: Google Drive API服务实例。 | |
- file_id: 要更新的文件的ID。 | |
- file_content: 新的文件内容,字符串格式。 | |
""" | |
# 将新的文件内容转换为字节流 | |
fh = io.BytesIO(file_content.encode('utf-8')) | |
media = MediaIoBaseUpload(fh, mimetype='application/json', resumable=True) | |
# 更新文件 | |
updated_file = service.files().update( | |
fileId=file_id, | |
media_body=media | |
).execute() | |
print(f"文件已更新,文件ID: {updated_file['id']}") | |
# ====drive==== | |
def process_file(file): | |
# 读取文件 | |
if file.name.endswith('.csv'): | |
df = pd.read_csv(file) | |
text = df_to_text(df) | |
elif file.name.endswith('.xlsx'): | |
df = pd.read_excel(file) | |
text = df_to_text(df) | |
elif file.name.endswith('.docx'): | |
text = docx_to_text(file) | |
else: | |
raise ValueError("Unsupported file type") | |
df_string = df.to_string() | |
# 宜蘭:移除@XX@符号 to | | |
df_string = df_string.replace("@XX@", "|") | |
# 根据上传的文件内容生成问题 | |
questions = generate_questions(df_string) | |
df_summarise = generate_df_summarise(df_string) | |
# 返回按钮文本和 DataFrame 字符串 | |
return questions[0] if len(questions) > 0 else "", \ | |
questions[1] if len(questions) > 1 else "", \ | |
questions[2] if len(questions) > 2 else "", \ | |
df_summarise, \ | |
df_string | |
def df_to_text(df): | |
# 将 DataFrame 转换为纯文本 | |
return df.to_string() | |
def docx_to_text(file): | |
# 将 Word 文档转换为纯文本 | |
doc = Document(file) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
def format_seconds_to_time(seconds): | |
"""将秒数格式化为 时:分:秒 的形式""" | |
hours = int(seconds // 3600) | |
minutes = int((seconds % 3600) // 60) | |
seconds = int(seconds % 60) | |
return f"{hours:02}:{minutes:02}:{seconds:02}" | |
def extract_youtube_id(url): | |
parsed_url = urlparse(url) | |
if "youtube.com" in parsed_url.netloc: | |
# 对于标准链接,视频ID在查询参数'v'中 | |
query_params = parse_qs(parsed_url.query) | |
return query_params.get("v")[0] if "v" in query_params else None | |
elif "youtu.be" in parsed_url.netloc: | |
# 对于短链接,视频ID是路径的一部分 | |
return parsed_url.path.lstrip('/') | |
else: | |
return None | |
def get_transcript(video_id): | |
languages = ['zh-TW', 'zh-Hant', 'en'] # 優先順序列表 | |
for language in languages: | |
try: | |
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=[language]) | |
return transcript # 成功獲取字幕,直接返回結果 | |
except NoTranscriptFound: | |
continue # 當前語言的字幕沒有找到,繼續嘗試下一個語言 | |
return None # 所有嘗試都失敗,返回None | |
def process_transcript_and_screenshots(video_id): | |
print("====process_transcript_and_screenshots====") | |
service = init_drive_service() | |
parent_folder_id = '1GgI4YVs0KckwStVQkLa1NZ8IpaEMurkL' | |
folder_id = create_folder_if_not_exists(service, video_id, parent_folder_id) | |
file_name = f'{video_id}_transcript.json' | |
# 检查逐字稿是否存在 | |
exists, file_id = check_file_exists(service, folder_id, file_name) | |
if not exists: | |
# 从YouTube获取逐字稿并上传 | |
transcript = get_transcript(video_id) | |
if transcript: | |
print("成功獲取字幕") | |
else: | |
print("沒有找到字幕") | |
transcript_text = json.dumps(transcript, ensure_ascii=False, indent=2) | |
file_id = upload_content_directly(service, file_name, folder_id, transcript_text) | |
print("逐字稿已上传到Google Drive") | |
else: | |
# 逐字稿已存在,下载逐字稿内容 | |
print("逐字稿已存在于Google Drive中") | |
transcript_text = download_file_as_string(service, file_id) | |
transcript = json.loads(transcript_text) | |
# 处理逐字稿中的每个条目,检查并上传截图 | |
for entry in transcript: | |
if 'img_file_id' not in entry: | |
screenshot_path = screenshot_youtube_video(video_id, entry['start']) | |
img_file_id = upload_img_directly(service, f"{video_id}_{entry['start']}.jpg", folder_id, screenshot_path) | |
set_public_permission(service, img_file_id) | |
entry['img_file_id'] = img_file_id | |
print(f"截图已上传到Google Drive: {img_file_id}") | |
# 更新逐字稿文件 | |
updated_transcript_text = json.dumps(transcript, ensure_ascii=False, indent=2) | |
update_file_on_drive(service, file_id, updated_transcript_text) | |
print("逐字稿已更新,包括截图链接") | |
return transcript | |
def process_youtube_link(link): | |
# 使用 YouTube API 获取逐字稿 | |
# 假设您已经获取了 YouTube 视频的逐字稿并存储在变量 `transcript` 中 | |
video_id = extract_youtube_id(link) | |
download_youtube_video(video_id, output_path=OUTPUT_PATH) | |
transcript = process_transcript_and_screenshots(video_id) | |
formatted_transcript = [] | |
screenshot_paths = [] | |
for entry in transcript: | |
start_time = format_seconds_to_time(entry['start']) | |
end_time = format_seconds_to_time(entry['start'] + entry['duration']) | |
embed_url = get_embedded_youtube_link(video_id, entry['start']) | |
img_file_id = entry['img_file_id'] | |
screenshot_path = f"https://drive.google.com/thumbnail?id={img_file_id}&sz=s4000" | |
line = { | |
"start_time": start_time, | |
"end_time": end_time, | |
"text": entry['text'], | |
"embed_url": embed_url, | |
"screenshot_path": screenshot_path | |
} | |
formatted_transcript.append(line) | |
screenshot_paths.append(screenshot_path) | |
html_content = format_transcript_to_html(formatted_transcript) | |
print("=====html_content=====") | |
print(html_content) | |
print("=====html_content=====") | |
# 基于逐字稿生成其他所需的输出 | |
questions = generate_questions(transcript) | |
# 将 DataFrame 转换为纯文本,並分行 | |
df_string_output = json.dumps(transcript, ensure_ascii=False, indent=2) | |
df_summarise = generate_df_summarise(transcript) | |
global TRANSCRIPTS | |
TRANSCRIPTS = formatted_transcript | |
# 确保返回与 UI 组件预期匹配的输出 | |
return questions[0] if len(questions) > 0 else "", \ | |
questions[1] if len(questions) > 1 else "", \ | |
questions[2] if len(questions) > 2 else "", \ | |
df_string_output, \ | |
df_summarise, \ | |
html_content | |
def format_transcript_to_html(formatted_transcript): | |
html_content = "" | |
for entry in formatted_transcript: | |
html_content += f"<h3>{entry['start_time']} - {entry['end_time']}</h3>" | |
html_content += f"<p>{entry['text']}</p>" | |
html_content += f"<img src='{entry['screenshot_path']}' width='500px' />" | |
return html_content | |
def get_embedded_youtube_link(video_id, start_time): | |
embed_url = f"https://www.youtube.com/embed/{video_id}?start={start_time}&autoplay=1" | |
return embed_url | |
def download_youtube_video(youtube_id, output_path=OUTPUT_PATH): | |
# Construct the full YouTube URL | |
youtube_url = f'https://www.youtube.com/watch?v={youtube_id}' | |
# Create the output directory if it doesn't exist | |
if not os.path.exists(output_path): | |
os.makedirs(output_path) | |
# Download the video | |
yt = YouTube(youtube_url) | |
video_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() | |
video_stream.download(output_path=output_path, filename=youtube_id+".mp4") | |
print(f"Video downloaded successfully: {output_path}/{youtube_id}.mp4") | |
def screenshot_youtube_video(youtube_id, snapshot_sec): | |
video_path = f'{OUTPUT_PATH}/{youtube_id}.mp4' | |
file_name = f"{youtube_id}_{snapshot_sec}.jpg" | |
with VideoFileClip(video_path) as video: | |
screenshot_path = f'{OUTPUT_PATH}/{file_name}' | |
video.save_frame(screenshot_path, snapshot_sec) | |
return screenshot_path | |
def get_screenshot_from_video(video_link, start_time): | |
# 实现从视频中提取帧的逻辑 | |
# 由于这需要服务器端处理,你可能需要一种方法来下载视频, | |
# 并使用 ffmpeg 或类似工具提取特定时间点的帧 | |
# 这里只是一个示意性的函数实现 | |
screenshot_url = f"[逻辑以提取视频 {video_link} 在 {start_time} 秒时的截图]" | |
return screenshot_url | |
def process_web_link(link): | |
# 抓取和解析网页内容 | |
response = requests.get(link) | |
soup = BeautifulSoup(response.content, 'html.parser') | |
return soup.get_text() | |
def generate_df_summarise(df_string): | |
# 使用 OpenAI 生成基于上传数据的问题 | |
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW" | |
user_content = f""" | |
請根據 {df_string},判斷這份文本 | |
如果是資料類型,請提估欄位敘述、資料樣態與資料分析,告訴學生這張表的意義,以及可能的結論與對應方式 | |
如果是影片類型,請提估影片內容,告訴學生這部影片的意義,以及可能的結論與對應方式 | |
""" | |
messages = [ | |
{"role": "system", "content": sys_content}, | |
{"role": "user", "content": user_content} | |
] | |
print("=====messages=====") | |
print(messages) | |
print("=====messages=====") | |
request_payload = { | |
"model": "gpt-4-1106-preview", | |
"messages": messages, | |
"max_tokens": 4000, | |
} | |
response = client.chat.completions.create(**request_payload) | |
df_summarise = response.choices[0].message.content.strip() | |
print("=====df_summarise=====") | |
print(df_summarise) | |
print("=====df_summarise=====") | |
return df_summarise | |
def generate_questions(df_string): | |
# 使用 OpenAI 生成基于上传数据的问题 | |
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,並用既有資料為本質猜測用戶可能會問的問題,使用 zh-TW" | |
user_content = f"請根據 {df_string} 生成三個問題,並用 JSON 格式返回 questions:[q1, q2, q3]" | |
messages = [ | |
{"role": "system", "content": sys_content}, | |
{"role": "user", "content": user_content} | |
] | |
response_format = { "type": "json_object" } | |
print("=====messages=====") | |
print(messages) | |
print("=====messages=====") | |
request_payload = { | |
"model": "gpt-4-1106-preview", | |
"messages": messages, | |
"max_tokens": 4000, | |
"response_format": response_format | |
} | |
response = client.chat.completions.create(**request_payload) | |
questions = json.loads(response.choices[0].message.content)["questions"] | |
print("=====json_response=====") | |
print(questions) | |
print("=====json_response=====") | |
return questions | |
def send_question(question, df_string_output, chat_history): | |
# 当问题按钮被点击时调用此函数 | |
return respond(question, df_string_output, chat_history) | |
def respond(user_message, df_string_output, chat_history): | |
print("=== 變數:user_message ===") | |
print(user_message) | |
print("=== 變數:chat_history ===") | |
print(chat_history) | |
sys_content = f"你是一個擅長資料分析跟影片教學的老師,user 為學生,請用 {df_string_output} 為資料文本,自行判斷資料的種類,並進行對話,使用 zh-TW" | |
messages = [ | |
{"role": "system", "content": sys_content}, | |
{"role": "user", "content": user_message} | |
] | |
print("=====messages=====") | |
print(messages) | |
print("=====messages=====") | |
request_payload = { | |
"model": "gpt-4-1106-preview", | |
"messages": messages, | |
"max_tokens": 4000 # 設定一個較大的值,可根據需要調整 | |
} | |
response = client.chat.completions.create(**request_payload) | |
print(response) | |
response_text = response.choices[0].message.content.strip() | |
# 更新聊天历史 | |
new_chat_history = (user_message, response_text) | |
if chat_history is None: | |
chat_history = [new_chat_history] | |
else: | |
chat_history.append(new_chat_history) | |
# 返回聊天历史和空字符串清空输入框 | |
return "", chat_history | |
def update_slide(direction): | |
current_index += direction | |
if current_index < 0: | |
current_index = 0 # 防止索引小于0 | |
elif current_index >= len(TRANSCRIPTS): | |
current_index = len(TRANSCRIPTS) - 1 # 防止索引超出范围 | |
# 获取当前条目的文本和截图 URL | |
current_transcript = TRANSCRIPTS[current_index] | |
return current_transcript["screenshot_url"], current_transcript["text"] | |
def prev_slide(): | |
return update_slide(-1) | |
# 包装函数来处理 "下一个" 按钮点击事件 | |
def next_slide(): | |
return update_slide(1) | |
current_index = 0 | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
file_upload = gr.File(label="Upload your CSV or Word file") | |
youtube_link = gr.Textbox(label="Enter YouTube Link") | |
web_link = gr.Textbox(label="Enter Web Page Link") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="Message") | |
send_button = gr.Button("Send") | |
with gr.Column(): | |
with gr.Tab("投影片"): | |
image = gr.Image() | |
text = gr.Textbox() | |
with gr.Row(): | |
prev_button = gr.Button("上一个") | |
next_button = gr.Button("下一个") | |
# 设置按钮的动作 | |
prev_button.click(fn=prev_slide, inputs=[], outputs=[image, text]) | |
next_button.click(fn=next_slide, inputs=[], outputs=[image, text]) | |
with gr.Tab("YouTube Transcript and Video"): | |
transcript_html = gr.HTML(label="YouTube Transcript and Video") | |
with gr.Tab("資料本文"): | |
df_string_output = gr.Textbox() | |
with gr.Tab("資料摘要"): | |
gr.Markdown("## 這是什麼樣的資料?") | |
df_summarise = gr.Textbox(container=True, show_copy_button=True, label="資料本文", lines=40) | |
with gr.Tab("常用問題"): | |
gr.Markdown("## 常用問題") | |
btn_1 = gr.Button() | |
btn_2 = gr.Button() | |
btn_3 = gr.Button() | |
send_button.click( | |
respond, | |
inputs=[msg, df_string_output, chatbot], | |
outputs=[msg, chatbot] | |
) | |
# 连接按钮点击事件 | |
btn_1.click(respond, inputs=[btn_1, df_string_output, chatbot], outputs=[msg, chatbot]) | |
btn_2.click(respond, inputs=[btn_2, df_string_output, chatbot], outputs=[msg, chatbot]) | |
btn_3.click(respond, inputs=[btn_3, df_string_output, chatbot], outputs=[msg, chatbot]) | |
# file_upload.change(process_file, inputs=file_upload, outputs=df_string_output) | |
file_upload.change(process_file, inputs=file_upload, outputs=[btn_1, btn_2, btn_3, df_summarise, df_string_output]) | |
# 当输入 YouTube 链接时触发 | |
youtube_link.change(process_youtube_link, inputs=youtube_link, outputs=[btn_1, btn_2, btn_3, df_string_output, df_summarise, transcript_html]) | |
# 当输入网页链接时触发 | |
web_link.change(process_web_link, inputs=web_link, outputs=[btn_1, btn_2, btn_3, df_summarise, df_string_output]) | |
if TRANSCRIPTS: # 确保列表不为空 | |
first_screenshot_url, first_text = update_slide(0) | |
image.update(value=first_screenshot_url) | |
text.update(value=first_text) | |
demo.launch(allowed_paths=["videos"]) | |