Spaces:
Sleeping
Sleeping
question_buttons = gr.Container()
Browse files
app.py
CHANGED
@@ -21,6 +21,16 @@ def process_file(file):
|
|
21 |
# 返回 DataFrame 字符串,以用作聊天机器人的系统提示
|
22 |
return df_string
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def respond(user_message, df_string_output, chat_history):
|
25 |
print("=== 變數:user_message ===")
|
26 |
print(user_message)
|
@@ -70,6 +80,7 @@ with gr.Blocks() as demo:
|
|
70 |
|
71 |
with gr.Column():
|
72 |
df_string_output = gr.Textbox(label="raw data")
|
|
|
73 |
|
74 |
send_button.click(
|
75 |
respond,
|
@@ -77,6 +88,16 @@ with gr.Blocks() as demo:
|
|
77 |
outputs=[msg, chatbot]
|
78 |
)
|
79 |
|
80 |
-
file_upload.change(process_file, inputs=file_upload, outputs=df_string_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
demo.launch()
|
|
|
21 |
# 返回 DataFrame 字符串,以用作聊天机器人的系统提示
|
22 |
return df_string
|
23 |
|
24 |
+
def generate_questions(df_string):
|
25 |
+
# 使用 OpenAI 生成基于上传数据的问题
|
26 |
+
# 这里需要编写代码来实现此功能
|
27 |
+
questions = ["问题 1", "问题 2", "问题 3"] # 示例问题列表
|
28 |
+
return questions
|
29 |
+
|
30 |
+
def send_question(question, df_string_output, chat_history):
|
31 |
+
# 当问题按钮被点击时调用此函数
|
32 |
+
return respond(question, df_string_output, chat_history)
|
33 |
+
|
34 |
def respond(user_message, df_string_output, chat_history):
|
35 |
print("=== 變數:user_message ===")
|
36 |
print(user_message)
|
|
|
80 |
|
81 |
with gr.Column():
|
82 |
df_string_output = gr.Textbox(label="raw data")
|
83 |
+
question_buttons = gr.Container()
|
84 |
|
85 |
send_button.click(
|
86 |
respond,
|
|
|
88 |
outputs=[msg, chatbot]
|
89 |
)
|
90 |
|
91 |
+
# file_upload.change(process_file, inputs=file_upload, outputs=df_string_output)
|
92 |
+
|
93 |
+
file_upload.change(process_file, inputs=file_upload, outputs=[df_string_output, question_buttons])
|
94 |
+
|
95 |
+
# 根据生成的问题创建按钮
|
96 |
+
for question in generate_questions(""): # 初始时为空
|
97 |
+
question_buttons.append(gr.Button(question, elem_id=question).click(
|
98 |
+
send_question,
|
99 |
+
inputs=[question, df_string_output, chatbot],
|
100 |
+
outputs=[msg, chatbot]
|
101 |
+
))
|
102 |
|
103 |
demo.launch()
|