import gradio as gr import json import requests import re class Chatbot: def __init__(self, config): self.video_id = config.get('video_id') self.content_subject = config.get('content_subject') self.content_grade = config.get('content_grade') self.jutor_chat_key = config.get('jutor_chat_key') self.transcript_text = self.get_transcript_text(config.get('transcript')) self.key_moments_text = self.get_key_moments_text(config.get('key_moments')) self.ai_model_name = config.get('ai_model_name') self.ai_client = config.get('ai_client') self.instructions = config.get('instructions') def get_transcript_text(self, transcript_data): if isinstance(transcript_data, str): transcript_json = json.loads(transcript_data) else: transcript_json = transcript_data for entry in transcript_json: entry.pop('end_time', None) transcript_text = json.dumps(transcript_json, ensure_ascii=False) return transcript_text def get_key_moments_text(self, key_moments_data): if isinstance(key_moments_data, str): key_moments_json = json.loads(key_moments_data) else: key_moments_json = key_moments_data # key_moments_json remove images for moment in key_moments_json: moment.pop('images', None) moment.pop('end', None) moment.pop('transcript', None) key_moments_text = json.dumps(key_moments_json, ensure_ascii=False) return key_moments_text def chat(self, user_message, chat_history): try: messages = self.prepare_messages(chat_history, user_message) system_prompt = self.instructions system_prompt += "\n\n告知用戶你現在是誰,第一次加上科目學伴及名字,後面就只說名字就好,但不用每次都說,自然就好,不用每一句都特別說明,口氣請符合給予的人設,請用繁體中文回答" service_type = self.ai_model_name response_text = self.chat_with_service(service_type, system_prompt, messages) except Exception as e: print(f"Error: {e}") response_text = "學習精靈有點累,請稍後再試!" return response_text def prepare_messages(self, chat_history, user_message): messages = [] if chat_history is not None: if len(chat_history) > 10: chat_history = chat_history[-10:] for user_msg, assistant_msg in chat_history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) if user_message: user_message += "/n (請一定要用繁體中文回答 zh-TW,並用台灣人的禮貌口語表達,回答時不要特別說明這是台灣人的語氣,不要提到「台灣腔」,不用提到「逐字稿」這個詞,用「內容」代替),回答時如果有用到數學式,請用數學符號代替純文字(Latex 用 $ 字號 render)" messages.append({"role": "user", "content": user_message}) return messages def chat_with_service(self, service_type, system_prompt, messages): if service_type == 'openai': return self.chat_with_jutor(system_prompt, messages) elif service_type == 'groq_llama3': return self.chat_with_groq(service_type, system_prompt, messages) elif service_type == 'groq_mixtral': return self.chat_with_groq(service_type, system_prompt, messages) elif service_type == 'claude3': return self.chat_with_claude3(system_prompt, messages) elif service_type in ['perplexity_sonar', 'perplexity_sonar_pro', 'perplexity_r1_1776']: return self.chat_with_perplexity(service_type, system_prompt, messages) else: raise gr.Error("不支持的服务类型") def chat_with_jutor(self, system_prompt, messages): messages.insert(0, {"role": "system", "content": system_prompt}) api_endpoint = "https://ci-live-feat-video-ai-dot-junyiacademy.appspot.com/api/v2/jutor/hf-chat" headers = { "Content-Type": "application/json", "x-api-key": self.jutor_chat_key, } model = "gpt-4o" print("======model======") print(model) data = { "data": { "messages": messages, "max_tokens": 512, "temperature": 0.9, "model": model, "stream": False, } } response = requests.post(api_endpoint, headers=headers, data=json.dumps(data)) response_data = response.json() response_completion = response_data['data']['choices'][0]['message']['content'].strip() return response_completion def chat_with_groq(self, model_name, system_prompt, messages): # system_prompt insert to messages 的最前面 {"role": "system", "content": system_prompt} messages.insert(0, {"role": "system", "content": system_prompt}) model_name_dict = { "groq_llama3": "llama-3.1-70b-versatile", "groq_mixtral": "mixtral-8x7b-32768" } model = model_name_dict.get(model_name) print("======model======") print(model) request_payload = { "model": model, "messages": messages, "max_tokens": 500 # 設定一個較大的值,可根據需要調整 } groq_client = self.ai_client response = groq_client.chat.completions.create(**request_payload) response_completion = response.choices[0].message.content.strip() return response_completion def chat_with_claude3(self, system_prompt, messages): if not system_prompt.strip(): raise ValueError("System prompt cannot be empty") model_id = "anthropic.claude-3-sonnet-20240229-v1:0" # model_id = "anthropic.claude-3-haiku-20240307-v1:0" print("======model_id======") print(model_id) kwargs = { "modelId": model_id, "contentType": "application/json", "accept": "application/json", "body": json.dumps({ "anthropic_version": "bedrock-2023-05-31", "max_tokens": 500, "system": system_prompt, "messages": messages }) } # 建立 message API,讀取回應 bedrock_client = self.ai_client response = bedrock_client.invoke_model(**kwargs) response_body = json.loads(response.get('body').read()) response_completion = response_body.get('content')[0].get('text').strip() return response_completion def chat_with_perplexity(self, service_type, system_prompt, messages): """使用 Perplexity API 進行對話""" if not system_prompt.strip(): raise ValueError("System prompt cannot be empty") # 清理用戶訊息中的特殊指令 for msg in messages: if msg["role"] == "user": # 移除可能導致問題的特殊指令 msg["content"] = msg["content"].replace("/n", "\n") # 移除括號內的特殊指令 msg["content"] = re.sub(r'\(請一定要用繁體中文回答.*?\)', '', msg["content"]) # 系統提示放在最前面 clean_messages = [{"role": "system", "content": system_prompt}] # 添加其他訊息 for msg in messages: if msg["role"] != "system": # 避免重複添加系統提示 clean_messages.append(msg) # 在系統提示中添加 Markdown 和 LaTeX 格式指導 system_prompt += "\n\n重要:使用 LaTeX 數學符號時,請確保格式正確。數學表達式應該使用 $ 符號包圍,例如:$7 \\times 10^4$。不要使用 ** 符號來強調數字,而是使用 $ 符號,例如:$7$個萬 ($7 \\times 10000$)。不要使用 \\text 或 \\quad 等命令。" # 根據服務類型選擇模型 model_name_dict = { "perplexity_sonar": "sonar", "perplexity_sonar_pro": "sonar-pro", "perplexity_r1_1776": "r1-1776" } model = model_name_dict.get(service_type, "sonar") print("======model======") print(model) print("======clean_messages======") print(json.dumps(clean_messages[:1], ensure_ascii=False)) # 只打印系統提示的前部分 try: perplexity_client = self.ai_client # 針對 r1-1776 模型調整參數 if service_type == "perplexity_r1_1776": # 增加 max_tokens 並添加特殊指令 response = perplexity_client.chat.completions.create( model=model, messages=clean_messages, max_tokens=1000, # 增加 token 限制 temperature=0.7, top_p=0.9 ) else: response = perplexity_client.chat.completions.create( model=model, messages=clean_messages, max_tokens=500, temperature=0.7, top_p=0.9 ) # 檢查回應是否為空 if not hasattr(response, 'choices') or len(response.choices) == 0: print("警告:API 回傳無效回應結構") return "學習精靈暫時無法回答,請稍後再試!" response_completion = response.choices[0].message.content if not response_completion or response_completion.strip() == "": print("警告:API 回傳空回應") return "學習精靈暫時無法回答,請稍後再試!" # 處理回應中的思考過程標籤和修正 LaTeX 格式 response_completion = self._process_response(response_completion) # 打印處理後的回應以便調試 print("======processed_response======") print(response_completion) return response_completion.strip() except Exception as e: print(f"Perplexity API Error: {e}") print(f"Error details: {str(e)}") # 嘗試使用備用模型 try: if service_type == "perplexity_r1_1776": print("嘗試使用備用模型 sonar") backup_response = perplexity_client.chat.completions.create( model="sonar", messages=clean_messages, max_tokens=500, temperature=0.7 ) backup_completion = backup_response.choices[0].message.content backup_completion = self._process_response(backup_completion) return backup_completion.strip() except Exception as backup_error: print(f"備用模型也失敗: {backup_error}") return "學習精靈暫時無法回答,請稍後再試!" def _process_response(self, response_text): """處理回應中的思考過程標籤和修正 LaTeX 格式""" # 移除 ... 區塊 import re response_text = re.sub(r'.*?', '', response_text, flags=re.DOTALL) # 移除其他可能的標籤或指令 response_text = re.sub(r'(偷偷說.*?)', '', response_text, flags=re.DOTALL) # 修正 Markdown 格式 # 1. 確保項目符號前後有正確的空格和換行 response_text = re.sub(r'(\n|^)(\s*)([-•○●◦])\s*', r'\1\2\3 ', response_text) # 2. 確保數字列表前後有正確的空格和換行 response_text = re.sub(r'(\n|^)(\s*)(\d+\.)\s*', r'\1\2\3 ', response_text) # 3. 修正 LaTeX 格式 # 移除不正確的 LaTeX 命令 response_text = re.sub(r'\\text\{([^}]+)\}', r'\1', response_text) response_text = re.sub(r'\\quad', ' ', response_text) # 4. 修正數學表達式 # 確保數學表達式中的乘法符號格式正確 response_text = re.sub(r'(\d+)個「([^」]+)」→\s*(\d+)\\times(\d+)', r'\1個「\2」→ $\3\\times\4$', response_text) # 5. 修正單獨數字的 LaTeX 格式 # 將單獨的數字包裹在 $ 符號中 response_text = re.sub(r'([^$\d])(\d+)([^$\d\w])', r'\1$\2$\3', response_text) # 6. 修正連續的 LaTeX 表達式 # 確保連續的 LaTeX 表達式之間有空格 response_text = re.sub(r'\$([^$]+)\$\$([^$]+)\$', r'$\1$ $\2$', response_text) # 7. 移除單獨的 $ 符號 response_text = re.sub(r'(?