Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import gradio as gr
|
4 |
+
from huggingface_hub import HfApi, whoami, ModelCard, model_info
|
5 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
6 |
+
from textwrap import dedent
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
from tempfile import TemporaryDirectory
|
10 |
+
|
11 |
+
from huggingface_hub.file_download import repo_folder_name
|
12 |
+
from optimum.exporters import TasksManager
|
13 |
+
|
14 |
+
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
|
15 |
+
from optimum.intel import (
|
16 |
+
OVModelForAudioClassification,
|
17 |
+
OVModelForCausalLM,
|
18 |
+
OVModelForFeatureExtraction,
|
19 |
+
OVModelForImageClassification,
|
20 |
+
OVModelForMaskedLM,
|
21 |
+
OVModelForQuestionAnswering,
|
22 |
+
OVModelForSeq2SeqLM,
|
23 |
+
OVModelForSequenceClassification,
|
24 |
+
OVModelForTokenClassification,
|
25 |
+
OVStableDiffusionPipeline,
|
26 |
+
OVStableDiffusionXLPipeline,
|
27 |
+
OVLatentConsistencyModelPipeline,
|
28 |
+
OVWeightQuantizationConfig,
|
29 |
+
)
|
30 |
+
from diffusers import ConfigMixin
|
31 |
+
|
32 |
+
_HEAD_TO_AUTOMODELS = {
|
33 |
+
"feature-extraction": "OVModelForFeatureExtraction",
|
34 |
+
"fill-mask": "OVModelForMaskedLM",
|
35 |
+
"text-generation": "OVModelForCausalLM",
|
36 |
+
"text-classification": "OVModelForSequenceClassification",
|
37 |
+
"token-classification": "OVModelForTokenClassification",
|
38 |
+
"question-answering": "OVModelForQuestionAnswering",
|
39 |
+
"image-classification": "OVModelForImageClassification",
|
40 |
+
"audio-classification": "OVModelForAudioClassification",
|
41 |
+
"stable-diffusion": "OVStableDiffusionPipeline",
|
42 |
+
"stable-diffusion-xl": "OVStableDiffusionXLPipeline",
|
43 |
+
"latent-consistency": "OVLatentConsistencyModelPipeline",
|
44 |
+
}
|
45 |
+
|
46 |
+
def quantize_model(
|
47 |
+
model_id: str,
|
48 |
+
dtype: str,
|
49 |
+
calibration_dataset: str,
|
50 |
+
ratio: str,
|
51 |
+
private_repo: bool,
|
52 |
+
overwritte: bool,
|
53 |
+
oauth_token: gr.OAuthToken,
|
54 |
+
):
|
55 |
+
if oauth_token.token is None:
|
56 |
+
return "You must be logged in to use this space"
|
57 |
+
|
58 |
+
if not model_id:
|
59 |
+
return f"### Invalid input 🐞 Please specify a model name, got {model_id}"
|
60 |
+
|
61 |
+
try:
|
62 |
+
model_name = model_id.split("/")[-1]
|
63 |
+
username = whoami(oauth_token.token)["name"]
|
64 |
+
w_t = dtype.replace("-", "")
|
65 |
+
suffix = f"{w_t}" if model_name.endswith("openvino") else f"openvino-{w_t}"
|
66 |
+
new_repo_id = f"{username}/{model_name}-{suffix}"
|
67 |
+
library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token)
|
68 |
+
|
69 |
+
if library_name == "diffusers":
|
70 |
+
ConfigMixin.config_name = "model_index.json"
|
71 |
+
class_name = ConfigMixin.load_config(model_id, token=oauth_token.token)["_class_name"].lower()
|
72 |
+
if "xl" in class_name:
|
73 |
+
task = "stable-diffusion-xl"
|
74 |
+
elif "consistency" in class_name:
|
75 |
+
task = "latent-consistency"
|
76 |
+
else:
|
77 |
+
task = "stable-diffusion"
|
78 |
+
else:
|
79 |
+
task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)
|
80 |
+
|
81 |
+
if task == "text2text-generation":
|
82 |
+
return "Export of Seq2Seq models is currently disabled."
|
83 |
+
|
84 |
+
if task not in _HEAD_TO_AUTOMODELS:
|
85 |
+
return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
|
86 |
+
|
87 |
+
auto_model_class = _HEAD_TO_AUTOMODELS[task]
|
88 |
+
ov_files = _find_files_matching_pattern(
|
89 |
+
model_id,
|
90 |
+
pattern=r"(.*)?openvino(.*)?\_model.xml",
|
91 |
+
use_auth_token=oauth_token.token,
|
92 |
+
)
|
93 |
+
export = len(ov_files) == 0
|
94 |
+
|
95 |
+
if calibration_dataset == "None":
|
96 |
+
calibration_dataset = None
|
97 |
+
|
98 |
+
is_int8 = dtype == "8-bit"
|
99 |
+
# if library_name == "diffusers":
|
100 |
+
# quant_method = "hybrid"
|
101 |
+
if not is_int8 and calibration_dataset is not None:
|
102 |
+
quant_method = "awq"
|
103 |
+
else:
|
104 |
+
if calibration_dataset is not None:
|
105 |
+
print("Default quantization was selected, calibration dataset won't be used")
|
106 |
+
quant_method = "default"
|
107 |
+
|
108 |
+
quantization_config = OVWeightQuantizationConfig(
|
109 |
+
bits=8 if is_int8 else 4,
|
110 |
+
quant_method=quant_method,
|
111 |
+
dataset=None if quant_method=="default" else calibration_dataset,
|
112 |
+
ratio=1.0 if is_int8 else ratio,
|
113 |
+
num_samples=None if quant_method=="default" else 20,
|
114 |
+
)
|
115 |
+
|
116 |
+
api = HfApi(token=oauth_token.token)
|
117 |
+
if api.repo_exists(new_repo_id) and not overwritte:
|
118 |
+
return f"Model {new_repo_id} already exist, please tick the overwritte box to push on an existing repository"
|
119 |
+
|
120 |
+
with TemporaryDirectory() as d:
|
121 |
+
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
122 |
+
os.makedirs(folder)
|
123 |
+
|
124 |
+
try:
|
125 |
+
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
|
126 |
+
ov_model = eval(auto_model_class).from_pretrained(
|
127 |
+
model_id,
|
128 |
+
export=export,
|
129 |
+
cache_dir=folder,
|
130 |
+
token=oauth_token.token,
|
131 |
+
quantization_config=quantization_config
|
132 |
+
)
|
133 |
+
ov_model.save_pretrained(folder)
|
134 |
+
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
|
135 |
+
new_repo_id = new_repo_url.repo_id
|
136 |
+
print("Repository created successfully!", new_repo_url)
|
137 |
+
|
138 |
+
folder = Path(folder)
|
139 |
+
for dir_name in (
|
140 |
+
"",
|
141 |
+
"vae_encoder",
|
142 |
+
"vae_decoder",
|
143 |
+
"text_encoder",
|
144 |
+
"text_encoder_2",
|
145 |
+
"unet",
|
146 |
+
"tokenizer",
|
147 |
+
"tokenizer_2",
|
148 |
+
"scheduler",
|
149 |
+
"feature_extractor",
|
150 |
+
):
|
151 |
+
if not (folder / dir_name).is_dir():
|
152 |
+
continue
|
153 |
+
for file_path in (folder / dir_name).iterdir():
|
154 |
+
if file_path.is_file():
|
155 |
+
try:
|
156 |
+
api.upload_file(
|
157 |
+
path_or_fileobj=file_path,
|
158 |
+
path_in_repo=os.path.join(dir_name, file_path.name),
|
159 |
+
repo_id=new_repo_id,
|
160 |
+
)
|
161 |
+
except Exception as e:
|
162 |
+
return f"Error uploading file {file_path}: {e}"
|
163 |
+
|
164 |
+
try:
|
165 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
166 |
+
except:
|
167 |
+
card = ModelCard("")
|
168 |
+
|
169 |
+
if card.data.tags is None:
|
170 |
+
card.data.tags = []
|
171 |
+
if "openvino" not in card.data.tags:
|
172 |
+
card.data.tags.append("openvino")
|
173 |
+
card.data.tags.append("nncf")
|
174 |
+
card.data.tags.append(dtype)
|
175 |
+
card.data.base_model = model_id
|
176 |
+
|
177 |
+
card.text = dedent(
|
178 |
+
f"""
|
179 |
+
This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel).
|
180 |
+
First make sure you have `optimum-intel` installed:
|
181 |
+
```bash
|
182 |
+
pip install optimum[openvino]
|
183 |
+
```
|
184 |
+
To load your model you can do as follows:
|
185 |
+
```python
|
186 |
+
from optimum.intel import {auto_model_class}
|
187 |
+
model_id = "{new_repo_id}"
|
188 |
+
model = {auto_model_class}.from_pretrained(model_id)
|
189 |
+
```
|
190 |
+
"""
|
191 |
+
)
|
192 |
+
card_path = os.path.join(folder, "README.md")
|
193 |
+
card.save(card_path)
|
194 |
+
|
195 |
+
api.upload_file(
|
196 |
+
path_or_fileobj=card_path,
|
197 |
+
path_in_repo="README.md",
|
198 |
+
repo_id=new_repo_id,
|
199 |
+
)
|
200 |
+
return f"This model was successfully quantized, find it under your repository {new_repo_url}"
|
201 |
+
finally:
|
202 |
+
shutil.rmtree(folder, ignore_errors=True)
|
203 |
+
except Exception as e:
|
204 |
+
return f"### Error: {e}"
|
205 |
+
|
206 |
+
DESCRIPTION = """
|
207 |
+
This Space uses [Optimum Intel](https://github.com/huggingface/optimum-intel) to automatically apply NNCF [Weight Only Quantization](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) (WOQ) on your model and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already.
|
208 |
+
After conversion, a repository will be pushed under your namespace with the resulting model.
|
209 |
+
The list of the supported architectures can be found in the [documentation](https://huggingface.co/docs/optimum/main/en/intel/openvino/models)
|
210 |
+
"""
|
211 |
+
|
212 |
+
model_id = HuggingfaceHubSearch(
|
213 |
+
label="Hub Model ID",
|
214 |
+
placeholder="Search for model id on the hub",
|
215 |
+
search_type="model",
|
216 |
+
)
|
217 |
+
dtype = gr.Dropdown(
|
218 |
+
["8-bit", "4-bit"],
|
219 |
+
value="8-bit",
|
220 |
+
label="Weights precision",
|
221 |
+
filterable=False,
|
222 |
+
visible=True,
|
223 |
+
)
|
224 |
+
"""
|
225 |
+
quant_method = gr.Dropdown(
|
226 |
+
["default", "awq", "hybrid"],
|
227 |
+
value="default",
|
228 |
+
label="Quantization method",
|
229 |
+
filterable=False,
|
230 |
+
visible=True,
|
231 |
+
)
|
232 |
+
"""
|
233 |
+
calibration_dataset = gr.Dropdown(
|
234 |
+
[
|
235 |
+
"None",
|
236 |
+
"wikitext2",
|
237 |
+
"c4",
|
238 |
+
"c4-new",
|
239 |
+
"conceptual_captions",
|
240 |
+
"laion/220k-GPT4Vision-captions-from-LIVIS",
|
241 |
+
"laion/filtered-wit",
|
242 |
+
],
|
243 |
+
value="None",
|
244 |
+
label="Calibration dataset",
|
245 |
+
filterable=False,
|
246 |
+
visible=True,
|
247 |
+
)
|
248 |
+
ratio = gr.Slider(
|
249 |
+
label="Ratio",
|
250 |
+
info="Parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization",
|
251 |
+
minimum=0.0,
|
252 |
+
maximum=1.0,
|
253 |
+
step=0.1,
|
254 |
+
value=1.0,
|
255 |
+
)
|
256 |
+
private_repo = gr.Checkbox(
|
257 |
+
value=False,
|
258 |
+
label="Private repository",
|
259 |
+
info="Create a private repository instead of a public one",
|
260 |
+
)
|
261 |
+
overwritte = gr.Checkbox(
|
262 |
+
value=False,
|
263 |
+
label="Overwrite repository content",
|
264 |
+
info="Enable pushing files on existing repositories, potentially overwriting existing files",
|
265 |
+
)
|
266 |
+
interface = gr.Interface(
|
267 |
+
fn=quantize_model,
|
268 |
+
inputs=[
|
269 |
+
model_id,
|
270 |
+
dtype,
|
271 |
+
calibration_dataset,
|
272 |
+
ratio,
|
273 |
+
private_repo,
|
274 |
+
overwritte,
|
275 |
+
],
|
276 |
+
outputs=[
|
277 |
+
gr.Markdown(label="output"),
|
278 |
+
],
|
279 |
+
title="Quantize your model with NNCF",
|
280 |
+
description=DESCRIPTION,
|
281 |
+
api_name=False,
|
282 |
+
)
|
283 |
+
|
284 |
+
with gr.Blocks() as demo:
|
285 |
+
gr.Markdown("You must be logged in to use this space")
|
286 |
+
gr.LoginButton(min_width=250)
|
287 |
+
interface.render()
|
288 |
+
|
289 |
+
demo.launch()
|