Spaces:
Sleeping
Sleeping
File size: 5,414 Bytes
0cd0b89 b2c04a4 0cd0b89 a42b9fc 0cd0b89 b2c04a4 0cd0b89 ce90c8f 0cd0b89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import torch
from transformers import pipeline
class ContentFilter:
def __init__(self):
# Initialize toxic content detection model
self.toxicity_classifier = pipeline(
'text-classification',
model='unitary/toxic-bert',
return_all_scores=True
)
# Keyword blacklist
self.blacklist = [
'hate', 'discriminate', 'violent',
'offensive', 'inappropriate', 'racist',
'sexist', 'homophobic', 'transphobic'
]
def filter_toxicity(self, text, toxicity_threshold=0.5):
"""
Detect toxic content using pre-trained model
Args:
text (str): Input text to check
toxicity_threshold (float): Threshold for filtering
Returns:
dict: Filtering results
"""
results = self.toxicity_classifier(text)[0]
# Convert results to dictionary
toxicity_scores = {
result['label']: result['score']
for result in results
}
# Check if any toxic category exceeds threshold
is_toxic = any(
score > toxicity_threshold
for score in toxicity_scores.values()
)
return {
'is_toxic': is_toxic,
'toxicity_scores': toxicity_scores
}
def filter_keywords(self, text):
"""
Check text against keyword blacklist
Args:
text (str): Input text to check
Returns:
list: Matched blacklisted keywords
"""
matched_keywords = [
keyword for keyword in self.blacklist
if keyword.lower() in text.lower()
]
return matched_keywords
def comprehensive_filter(self, text):
"""
Perform comprehensive content filtering
Args:
text (str): Input text to filter
Returns:
dict: Comprehensive filtering results
"""
# Toxicity model filtering
toxicity_results = self.filter_toxicity(text)
# Keyword blacklist filtering
blacklisted_keywords = self.filter_keywords(text)
# Combine results
return {
'toxicity': toxicity_results,
'blacklisted_keywords': blacklisted_keywords,
'is_safe': not toxicity_results['is_toxic'] and len(blacklisted_keywords) == 0
}
# Initialize content filter
content_filter = ContentFilter()
# Initialize Hugging Face client
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = InferenceClient("google-t5/t5-small")
# Load dataset (optional)
dataset = load_dataset("JustKiddo/KiddosVault")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p
):
# First, filter the incoming user message
message_filter_result = content_filter.comprehensive_filter(message)
# If message is not safe, return a warning
if not message_filter_result['is_safe']:
toxicity_details = message_filter_result['toxicity']['toxicity_scores']
blacklisted_keywords = message_filter_result['blacklisted_keywords']
warning_message = "Message flagged for inappropriate content. "
warning_message += "Detected issues: "
# Add toxicity details
for category, score in toxicity_details.items():
if score > 0.5:
warning_message += f"{category} (Score: {score:.2f}), "
# Add blacklisted keywords
if blacklisted_keywords:
warning_message += f"Blacklisted keywords: {', '.join(blacklisted_keywords)}"
return warning_message
# Prepare messages for chat completion
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Generate response
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p
):
token = message.choices[0].delta.content
response += token
yield response
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a professional and friendly assistant.",
label="System message"
),
gr.Slider(
minimum=1,
maximum=6144,
value=6144,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=1,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
]
)
if __name__ == "__main__":
demo.launch(debug=True) |