JustKiddo commited on
Commit
038efdf
·
verified ·
1 Parent(s): 801c513

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -6
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  from datasets import load_dataset
 
4
 
5
  """
6
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
@@ -8,13 +9,12 @@ For more information on `huggingface_hub` Inference API support, please check th
8
 
9
  #Update: Using a new base model
10
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
11
- #client = InferenceClient("HuggingFaceH4/zephyr-7b-gemma-v0.1")
12
- #topic_model = BERTopic.load("MaartenGr/BERTopic_Wikipedia")
13
- # Train model
14
- #topic_model = BERTopic("english")
15
- #topics, probs = topic_model.fit_transform(docs)
16
  dataset = load_dataset("JustKiddo/KiddosVault")
17
 
 
 
 
 
18
  def respond(
19
  message,
20
  history: list[tuple[str, str]],
@@ -47,10 +47,24 @@ def respond(
47
  response += token
48
  yield response
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  """
51
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
52
  """
53
- demo = gr.ChatInterface(
 
54
  respond,
55
  additional_inputs=[
56
  gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"),
@@ -66,6 +80,21 @@ demo = gr.ChatInterface(
66
  ],
67
  )
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  if __name__ == "__main__":
71
  demo.launch(debug=True)
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  from datasets import load_dataset
4
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
 
6
  """
7
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
9
 
10
  #Update: Using a new base model
11
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
12
  dataset = load_dataset("JustKiddo/KiddosVault")
13
 
14
+ # Load the tokenizer and model for token display
15
+ tokenizer = AutoTokenizer.from_pretrained("t5-small") #Google's T5 Model
16
+ model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
17
+
18
  def respond(
19
  message,
20
  history: list[tuple[str, str]],
 
47
  response += token
48
  yield response
49
 
50
+ #My custom token generator
51
+ def generate_tokens(text):
52
+ input = tokenizer(text, return_tensors="pt")
53
+ output = model.generate(**input)
54
+
55
+ input_ids = input["input_ids"].tolist()[0]
56
+ output_ids = output.tolist()[0]
57
+
58
+ input_tokens_str = tokenizer.convert_ids_to_tokens(input_ids)
59
+ output_tokens_str = tokenizer.convert_ids_to_tokens(output_ids)
60
+
61
+ return " ".join(input_tokens_str), " ".join(output_tokens_str)
62
+
63
  """
64
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
65
  """
66
+
67
+ chatInterface = gr.ChatInterface(
68
  respond,
69
  additional_inputs=[
70
  gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"),
 
80
  ],
81
  )
82
 
83
+ with gr.Blocks() as demo:
84
+ with gr.Row():
85
+ chatInterface
86
+ with gr.Column():
87
+ input_text = gr.Textbox(label="Input text")
88
+ input_tokens = gr.Textbox(label="Input tokens")
89
+ output_tokens = gr.Textbox(label="Output tokens")
90
+
91
+ def update_tokens(input_text):
92
+ input_tokens_str, output_tokens_str = generate_tokens(input_text)
93
+ return input_tokens_str, output_tokens_str
94
+
95
+ input_text.change(update_tokens,
96
+ inputs=input_text,
97
+ output_tokens=[input_tokens, output_tokens])
98
 
99
  if __name__ == "__main__":
100
  demo.launch(debug=True)