Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from datasets import load_dataset
|
4 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
|
6 |
"""
|
7 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -9,12 +8,13 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
9 |
|
10 |
#Update: Using a new base model
|
11 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
|
|
|
|
|
|
12 |
dataset = load_dataset("JustKiddo/KiddosVault")
|
13 |
|
14 |
-
# Load the tokenizer and model for token display
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") #Google's T5 Model
|
16 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small")
|
17 |
-
|
18 |
def respond(
|
19 |
message,
|
20 |
history: list[tuple[str, str]],
|
@@ -47,71 +47,25 @@ def respond(
|
|
47 |
response += token
|
48 |
yield response
|
49 |
|
50 |
-
#My custom token generator
|
51 |
-
def generate_tokens(text):
|
52 |
-
input = tokenizer(text, return_tensors="pt")
|
53 |
-
output = model.generate(**input)
|
54 |
-
|
55 |
-
input_ids = input["input_ids"].tolist()[0]
|
56 |
-
output_ids = output.tolist()[0]
|
57 |
-
|
58 |
-
formatted_output = [format(x, 'd') for x in output_ids]
|
59 |
-
|
60 |
-
input_tokens_str = tokenizer.convert_ids_to_tokens(input_ids)
|
61 |
-
#output_tokens_str = tokenizer.convert_tokens_to_ids(output_ids)
|
62 |
-
|
63 |
-
return " ".join(input_tokens_str), " ".join(formatted_output)
|
64 |
-
|
65 |
"""
|
66 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
67 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
#chatInterface = gr.ChatInterface(
|
70 |
-
# respond,
|
71 |
-
# additional_inputs=[
|
72 |
-
# gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"),
|
73 |
-
# gr.Slider(minimum=1, maximum=6144, value=6144, step=1, label="Max new tokens"),
|
74 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=1, step=0.1, label="Temperature"),
|
75 |
-
# gr.Slider(
|
76 |
-
# minimum=0.1,
|
77 |
-
# maximum=1.0,
|
78 |
-
# value=0.95,
|
79 |
-
# step=0.05,
|
80 |
-
# label="Top-p (nucleus sampling)",
|
81 |
-
# ),
|
82 |
-
# ],
|
83 |
-
#)
|
84 |
-
|
85 |
-
with gr.Blocks() as demo:
|
86 |
-
with gr.Column():
|
87 |
-
gr.ChatInterface(
|
88 |
-
respond,
|
89 |
-
additional_inputs=[
|
90 |
-
gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"),
|
91 |
-
gr.Slider(minimum=1, maximum=6144, value=6144, step=1, label="Max new tokens"),
|
92 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=1, step=0.1, label="Temperature"),
|
93 |
-
gr.Slider(
|
94 |
-
minimum=0.1,
|
95 |
-
maximum=1.0,
|
96 |
-
value=0.95,
|
97 |
-
step=0.05,
|
98 |
-
label="Top-p (nucleus sampling)",
|
99 |
-
),
|
100 |
-
],
|
101 |
-
)
|
102 |
-
|
103 |
-
with gr.Row():
|
104 |
-
input_text = gr.Textbox(label="Input text")
|
105 |
-
input_tokens = gr.Textbox(label="Input tokens")
|
106 |
-
output_ids = gr.Textbox(label="Output tokens")
|
107 |
-
|
108 |
-
def update_tokens(input_text):
|
109 |
-
input_tokens_str, output_ids = generate_tokens(input_text)
|
110 |
-
return input_tokens_str, output_ids
|
111 |
-
|
112 |
-
input_text.change(update_tokens,
|
113 |
-
inputs=input_text,
|
114 |
-
outputs=[input_tokens, output_ids])
|
115 |
|
116 |
if __name__ == "__main__":
|
117 |
-
demo.launch(debug=True
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from datasets import load_dataset
|
|
|
4 |
|
5 |
"""
|
6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
8 |
|
9 |
#Update: Using a new base model
|
10 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
11 |
+
#client = InferenceClient("HuggingFaceH4/zephyr-7b-gemma-v0.1")
|
12 |
+
#topic_model = BERTopic.load("MaartenGr/BERTopic_Wikipedia")
|
13 |
+
# Train model
|
14 |
+
#topic_model = BERTopic("english")
|
15 |
+
#topics, probs = topic_model.fit_transform(docs)
|
16 |
dataset = load_dataset("JustKiddo/KiddosVault")
|
17 |
|
|
|
|
|
|
|
|
|
18 |
def respond(
|
19 |
message,
|
20 |
history: list[tuple[str, str]],
|
|
|
47 |
response += token
|
48 |
yield response
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
"""
|
51 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
52 |
"""
|
53 |
+
demo = gr.ChatInterface(
|
54 |
+
respond,
|
55 |
+
additional_inputs=[
|
56 |
+
gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"),
|
57 |
+
gr.Slider(minimum=1, maximum=6144, value=6144, step=1, label="Max new tokens"),
|
58 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=1, step=0.1, label="Temperature"),
|
59 |
+
gr.Slider(
|
60 |
+
minimum=0.1,
|
61 |
+
maximum=1.0,
|
62 |
+
value=0.95,
|
63 |
+
step=0.05,
|
64 |
+
label="Top-p (nucleus sampling)",
|
65 |
+
),
|
66 |
+
],
|
67 |
+
)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
+
demo.launch(debug=True)
|