File size: 5,618 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple

from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin

    from ...hparams import DataArguments
    from ..template import Template


logger = get_logger(__name__)


def _encode_feedback_example(
    prompt: Sequence[Dict[str, str]],
    response: Sequence[Dict[str, str]],
    kl_response: Sequence[Dict[str, str]],
    system: Optional[str],
    tools: Optional[str],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    data_args: "DataArguments",
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
    if processor is not None and not hasattr(processor, "image_seq_length"):  # llava-like models
        prompt[0]["content"] = template.image_token + prompt[0]["content"]

    if response[0]["content"]:  # desired example
        kto_tag = True
        messages = prompt + [response[0]]
    else:  # undesired example
        kto_tag = False
        messages = prompt + [response[1]]

    if kl_response[0]["content"]:
        kl_messages = prompt + [kl_response[0]]
    else:
        kl_messages = prompt + [kl_response[1]]

    prompt_ids, response_ids = template.encode_oneturn(
        tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
    )
    _, kl_response_ids = template.encode_oneturn(
        tokenizer, kl_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
    )

    if template.efficient_eos:
        response_ids += [tokenizer.eos_token_id]
        kl_response_ids += [tokenizer.eos_token_id]

    if processor is not None and hasattr(processor, "image_seq_length"):  # paligemma models
        image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
        prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids

    input_ids = prompt_ids + response_ids
    labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
    kl_input_ids = prompt_ids + kl_response_ids
    kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids

    return input_ids, labels, kl_input_ids, kl_labels, kto_tag


def preprocess_feedback_dataset(
    examples: Dict[str, List[Any]],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
    kl_response = examples["response"][::-1]
    model_inputs = {
        "input_ids": [],
        "attention_mask": [],
        "labels": [],
        "kl_input_ids": [],
        "kl_attention_mask": [],
        "kl_labels": [],
        "kto_tags": [],
    }
    if processor is not None:
        model_inputs["pixel_values"] = []
        if hasattr(processor, "image_seq_length"):  # paligemma models
            model_inputs["token_type_ids"] = []
            model_inputs["kl_token_type_ids"] = []

    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
            logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
            continue

        input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
            prompt=examples["prompt"][i],
            response=examples["response"][i],
            kl_response=kl_response[i],
            system=examples["system"][i],
            tools=examples["tools"][i],
            template=template,
            tokenizer=tokenizer,
            processor=processor,
            data_args=data_args,
        )
        model_inputs["input_ids"].append(input_ids)
        model_inputs["attention_mask"].append([1] * len(input_ids))
        model_inputs["labels"].append(labels)
        model_inputs["kl_input_ids"].append(kl_input_ids)
        model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
        model_inputs["kl_labels"].append(kl_labels)
        model_inputs["kto_tags"].append(kto_tag)
        if processor is not None:
            model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
            if hasattr(processor, "image_seq_length"):  # paligemma models
                model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
                model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor))

    desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
    undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
    if desirable_num == 0 or undesirable_num == 0:
        logger.warning("Your dataset only has one preference type.")

    return model_inputs