File size: 7,016 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers and Optimum library.
# https://github.com/huggingface/transformers/blob/v4.41.0/src/transformers/utils/quantization_config.py
# https://github.com/huggingface/optimum/blob/v1.20.0/optimum/gptq/data.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import random
from enum import Enum, unique
from typing import TYPE_CHECKING, Any, Dict, List

import torch
from datasets import load_dataset
from transformers import BitsAndBytesConfig, GPTQConfig
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled
from transformers.utils.versions import require_version

from ...extras.constants import FILEEXT2TYPE
from ...extras.logging import get_logger
from ...extras.misc import get_current_device


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedTokenizer

    from ...hparams import ModelArguments


logger = get_logger(__name__)


@unique
class QuantizationMethod(str, Enum):
    r"""
    Borrowed from `transformers.utils.quantization_config.QuantizationMethod`.
    """

    BITS_AND_BYTES = "bitsandbytes"
    GPTQ = "gptq"
    AWQ = "awq"
    AQLM = "aqlm"
    QUANTO = "quanto"
    EETQ = "eetq"
    HQQ = "hqq"


def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]:
    r"""
    TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600
    """
    if os.path.isfile(model_args.export_quantization_dataset):
        data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None)
        data_files = model_args.export_quantization_dataset
    else:
        data_path = model_args.export_quantization_dataset
        data_files = None

    dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir)
    maxlen = model_args.export_quantization_maxlen

    samples = []
    for _ in range(model_args.export_quantization_nsamples):
        while True:
            sample_idx = random.randint(0, len(dataset) - 1)
            sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
            if sample["input_ids"].size(1) >= maxlen:
                break  # TODO: fix large maxlen

        word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
        input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen]
        samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True))

    return samples


def configure_quantization(
    config: "PretrainedConfig",
    tokenizer: "PreTrainedTokenizer",
    model_args: "ModelArguments",
    init_kwargs: Dict[str, Any],
) -> None:
    r"""
    Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
    """
    if getattr(config, "quantization_config", None):  # ptq
        if is_deepspeed_zero3_enabled():
            raise ValueError("DeepSpeed ZeRO-3 is incompatible with PTQ-quantized models.")

        quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None)
        quant_method = quantization_config.get("quant_method", "")

        if quant_method == QuantizationMethod.GPTQ:
            require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
            quantization_config.pop("disable_exllama", None)  # remove deprecated args
            quantization_config["use_exllama"] = False  # disable exllama

        if quant_method == QuantizationMethod.AWQ:
            require_version("autoawq", "To fix: pip install autoawq")

        if quant_method == QuantizationMethod.AQLM:
            require_version("transformers>=4.39.0", "To fix: pip install transformers>=4.39.0")
            require_version("aqlm>=1.1.0", "To fix: pip install aqlm[gpu]>=1.1.0")
            quantization_config["bits"] = 2

        quant_bits = quantization_config.get("bits", "?")
        logger.info("Loading {}-bit {}-quantized model.".format(quant_bits, quant_method.upper()))

    elif model_args.export_quantization_bit is not None:  # auto-gptq
        require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
        require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
        from accelerate.utils import get_max_memory

        if getattr(config, "model_type", None) == "chatglm":
            raise ValueError("ChatGLM model is not supported.")

        init_kwargs["quantization_config"] = GPTQConfig(
            bits=model_args.export_quantization_bit,
            tokenizer=tokenizer,
            dataset=_get_quantization_dataset(tokenizer, model_args),
        )
        init_kwargs["device_map"] = "auto"
        init_kwargs["max_memory"] = get_max_memory()
        logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))

    elif model_args.quantization_bit is not None:  # bnb
        if model_args.quantization_bit == 8:
            require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
            init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)

        elif model_args.quantization_bit == 4:
            require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
            init_kwargs["quantization_config"] = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=model_args.compute_dtype,
                bnb_4bit_use_double_quant=model_args.double_quantization,
                bnb_4bit_quant_type=model_args.quantization_type,
                bnb_4bit_quant_storage=model_args.compute_dtype,  # crucial for fsdp+qlora
            )

        # assign device map if:
        # 1. not deepspeed zero3 and not fsdp
        # 2. not auto quantization device map
        if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or model_args.quantization_device_map == "auto":
            if model_args.quantization_bit != 4:
                raise ValueError("Only 4-bit quantized model can use fsdp+qlora or auto device map.")

            require_version("bitsandbytes>=0.43.0", "To fix: pip install bitsandbytes>=0.43.0")
        else:
            init_kwargs["device_map"] = {"": get_current_device()}  # change auto device map for inference

        logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))