File size: 22,898 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/ppo_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import os
import sys
import warnings
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple

import torch
from accelerate.utils import DistributedDataParallelKwargs
from tqdm import tqdm
from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState
from transformers.optimization import get_scheduler
from transformers.trainer_pt_utils import remove_dummy_checkpoint
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
from trl import PPOConfig, PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits
from trl.models.utils import unwrap_model_for_generation

from ...extras.callbacks import FixValueHeadModelCallback, LogCallback
from ...extras.logging import get_logger
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
from .ppo_utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm


if TYPE_CHECKING:
    from datasets import Dataset
    from transformers import (
        DataCollatorWithPadding,
        PreTrainedTokenizer,
        ProcessorMixin,
        Seq2SeqTrainingArguments,
        TrainerCallback,
    )
    from trl import AutoModelForCausalLMWithValueHead

    from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments


logger = get_logger(__name__)


class CustomPPOTrainer(PPOTrainer, Trainer):
    r"""
    Inherits PPOTrainer.
    """

    def __init__(
        self,
        model_args: "ModelArguments",
        training_args: "Seq2SeqTrainingArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
        callbacks: List["TrainerCallback"],
        model: "AutoModelForCausalLMWithValueHead",
        reward_model: Optional["AutoModelForCausalLMWithValueHead"],
        ref_model: Optional["AutoModelForCausalLMWithValueHead"],
        tokenizer: "PreTrainedTokenizer",
        processor: Optional["ProcessorMixin"],
        dataset: "Dataset",
        data_collator: "DataCollatorWithPadding",
    ):
        backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
        ppo_config = PPOConfig(
            model_name=model_args.model_name_or_path,
            learning_rate=training_args.learning_rate,
            mini_batch_size=training_args.per_device_train_batch_size,
            batch_size=backward_batch_size * finetuning_args.ppo_buffer_size,
            gradient_accumulation_steps=training_args.gradient_accumulation_steps,
            ppo_epochs=finetuning_args.ppo_epochs,
            max_grad_norm=training_args.max_grad_norm,
            seed=training_args.seed,
            optimize_device_cache=True,
            target=finetuning_args.ppo_target,
            use_score_scaling=finetuning_args.ppo_score_norm,
            use_score_norm=finetuning_args.ppo_score_norm,
            whiten_rewards=finetuning_args.ppo_whiten_rewards,
            accelerator_kwargs={"step_scheduler_with_optimizer": False},
            log_with=training_args.report_to[0] if training_args.report_to else None,
            project_kwargs={"logging_dir": training_args.logging_dir},
        )

        # Add deepspeed config
        ppo_config.accelerator_kwargs["kwargs_handlers"] = [
            DistributedDataParallelKwargs(find_unused_parameters=training_args.ddp_find_unused_parameters)
        ]
        if training_args.deepspeed_plugin is not None:
            ppo_config.accelerator_kwargs["deepspeed_plugin"] = training_args.deepspeed_plugin

        # Create optimizer and scheduler
        if training_args.max_steps > 0:
            num_training_steps = training_args.max_steps
        else:
            total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size
            num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)

        optimizer = self.create_optimizer(model, training_args, finetuning_args)
        scheduler = self.create_scheduler(training_args, num_training_steps, optimizer)

        PPOTrainer.__init__(
            self,
            config=ppo_config,
            model=model,
            ref_model=ref_model,
            tokenizer=tokenizer,
            dataset=dataset,
            data_collator=data_collator,
            lr_scheduler=scheduler,
        )

        self.args = training_args
        self.model_args = model_args
        self.finetuning_args = finetuning_args
        self.reward_model = reward_model
        self.current_device = get_current_device()  # patch for deepspeed training
        self.processor = processor

        self.generation_config = GenerationConfig(
            pad_token_id=self.tokenizer.pad_token_id,
            eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
            **generating_args.to_dict(),
        )

        self.state = TrainerState()
        self.control = TrainerControl()
        self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
        self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
        self.log_callback, self.save_callback = callbacks[0], callbacks[1]
        assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)

        if self.args.max_steps > 0:
            logger.info("max_steps is given, it will override any value given in num_train_epochs")

        unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
        self.is_chatglm_model = getattr(unwrapped_model.config, "model_type", None) == "chatglm"

        self.amp_context = torch.autocast(self.current_device.type, dtype=self.model_args.compute_dtype)
        warnings.simplefilter("ignore")  # remove gc warnings on ref model

        if finetuning_args.reward_model_type == "full":
            if self.is_deepspeed_enabled:
                if not (
                    getattr(reward_model.pretrained_model, "is_loaded_in_8bit", False)
                    or getattr(reward_model.pretrained_model, "is_loaded_in_4bit", False)
                ):  # quantized models are already set on the correct device
                    self.reward_model = self._prepare_deepspeed(self.reward_model)
            else:
                self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)

        if finetuning_args.use_badam:
            from badam import clip_grad_norm_for_sparse_tensor

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)

    def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
        r"""
        Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
        """
        if resume_from_checkpoint is not None:
            raise ValueError("`resume_from_checkpoint` will be supported in the future version.")

        total_train_batch_size = (
            self.args.per_device_train_batch_size
            * self.args.gradient_accumulation_steps
            * self.finetuning_args.ppo_buffer_size
            * self.args.world_size
        )
        if self.args.max_steps > 0:
            num_examples = total_train_batch_size * self.args.max_steps
            num_train_epochs = sys.maxsize
            max_steps = self.args.max_steps
            steps_in_epoch = self.args.max_steps
        else:
            len_dataloader = len(self.dataloader)
            num_examples = len(self.dataset)
            num_train_epochs = self.args.num_train_epochs
            max_steps = math.ceil(num_train_epochs * len_dataloader)
            steps_in_epoch = len_dataloader

        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()

        if self.is_world_process_zero():
            logger.info("***** Running training *****")
            logger.info("  Num examples = {}".format(num_examples))
            logger.info("  Num Epochs = {}".format(num_train_epochs))
            logger.info("  Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size))
            logger.info(
                "  Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format(
                    total_train_batch_size
                )
            )
            logger.info("  Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps))
            logger.info("  Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs))
            logger.info("  Total training steps = {}".format(max_steps))
            logger.info("  Number of trainable parameters = {}".format(count_parameters(self.model)[0]))

        dataiter = iter(self.dataloader)
        loss_meter = AverageMeter()
        reward_meter = AverageMeter()
        self.log_callback.on_train_begin(self.args, self.state, self.control)

        for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()):
            try:
                batch = next(dataiter)
            except StopIteration:
                dataiter = iter(self.dataloader)
                batch = next(dataiter)

            # Get inputs
            self.model.eval()
            self.tokenizer.padding_side = "right"  # change padding side
            queries, responses, rewards = [], [], []
            for idx in range(0, self.config.batch_size, self.config.mini_batch_size):
                mini_batch_queries, mini_batch_responses = self.get_inputs(
                    batch[idx : idx + self.config.mini_batch_size]
                )
                mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses)
                queries.extend(mini_batch_queries)
                responses.extend(mini_batch_responses)
                rewards.extend(mini_batch_rewards)

            # Run PPO step
            self.model.train()
            stats = self.step(queries, responses, rewards)
            self.tokenizer.padding_side = "left"  # restore padding side
            loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards))
            reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))

            if self.config.log_with is not None:
                try:
                    batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True)
                    batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True)
                    self.log_stats(stats, batch, rewards)
                except Exception:
                    logger.warning("Failed to save stats due to unknown errors.")

            self.state.global_step += 1
            self.log_callback.on_step_end(self.args, self.state, self.control)

            if self.is_local_process_zero() and (step + 1) % self.args.logging_steps == 0:
                logs = dict(
                    loss=round(loss_meter.avg, 4),
                    reward=round(reward_meter.avg, 4),
                    learning_rate=stats["ppo/learning_rate"],
                    epoch=round(step / steps_in_epoch, 2),
                )
                tqdm.write(str(logs))
                logs["step"] = step
                self.state.log_history.append(logs)
                self.log_callback.on_log(self.args, self.state, self.control)
                loss_meter.reset()
                reward_meter.reset()

            if (step + 1) % self.args.save_steps == 0:  # save checkpoint
                self.save_model(
                    os.path.join(self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step))
                )
                self.save_callback.on_save(
                    self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
                )

            if self.control.should_epoch_stop or self.control.should_training_stop:
                break

        self.log_callback.on_train_end(self.args, self.state, self.control)
        self.save_callback.on_train_end(
            self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
        )

    def create_optimizer(
        self,
        model: "AutoModelForCausalLMWithValueHead",
        training_args: "Seq2SeqTrainingArguments",
        finetuning_args: "FinetuningArguments",
    ) -> "torch.optim.Optimizer":
        optimizer = create_custom_optimzer(model, training_args, finetuning_args)
        if optimizer is None:
            decay_params, nodecay_params = [], []
            decay_param_names = self.get_decay_parameter_names(model)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    if name in decay_param_names:
                        decay_params.append(param)
                    else:
                        nodecay_params.append(param)

            optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
            param_groups = [
                dict(params=nodecay_params),
                dict(params=decay_params, weight_decay=training_args.weight_decay),
            ]
            optimizer = optim_class(param_groups, **optim_kwargs)

        return optimizer

    def create_scheduler(
        self, training_args: "Seq2SeqTrainingArguments", num_training_steps: int, optimizer: "torch.optim.Optimizer"
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(training_args, num_training_steps, optimizer)
        lr_scheduler = get_scheduler(
            training_args.lr_scheduler_type,
            optimizer=optimizer,
            num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
            num_training_steps=num_training_steps,
        )
        return lr_scheduler

    @torch.no_grad()
    def get_inputs(self, batch: Dict[str, "torch.Tensor"]) -> Tuple[List["torch.Tensor"], List["torch.Tensor"]]:
        r"""
        Generates model's responses given queries.
        """
        if batch["input_ids"].size(0) == 1:  # handle llama2 ppo with gradient accumulation > 1
            start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item()
            for k, v in batch.items():
                batch[k] = v[:, start_index:]

        with unwrap_model_for_generation(self.model, self.accelerator) as unwrapped_model:
            unwrapped_model = self.accelerator.unwrap_model(self.model)  # issue in trl v0.8.6
            if self.model_args.upcast_layernorm:
                layernorm_params = dump_layernorm(unwrapped_model)

            generate_output: torch.Tensor = unwrapped_model.generate(
                generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch
            )
            if self.model_args.upcast_layernorm:
                restore_layernorm(unwrapped_model, layernorm_params)

        query = batch["input_ids"].detach().cpu()
        response = generate_output[:, batch["input_ids"].size(-1) :].detach().cpu()
        queries, responses = [], []
        for i in range(len(query)):
            query_start_index = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item()
            response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()

            if len(response_index) == 0:
                response_length = 1  # allow empty response
            else:
                response_length = response_index[-1].item() + 1

            queries.append(query[i, query_start_index:])  # remove padding from left
            responses.append(response[i, :response_length])  # remove padding from right

        return queries, responses

    @torch.no_grad()
    def get_rewards(
        self,
        queries: List["torch.Tensor"],
        responses: List["torch.Tensor"],
    ) -> List["torch.Tensor"]:
        r"""
        Computes scores using given reward model.

        Both inputs and outputs are put on CPU.
        """
        if self.finetuning_args.reward_model_type == "api":
            token_ids = [torch.cat((q, r), dim=-1).tolist() for q, r in zip(queries, responses)]
            messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True)
            return get_rewards_from_server(self.reward_model, messages)

        batch = self.prepare_model_inputs(queries, responses)
        unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)

        if self.finetuning_args.reward_model_type == "lora":
            replace_model(unwrapped_model, target="reward")
            reward_model = self.model
        else:
            reward_model = self.reward_model

        with unwrap_model_for_generation(reward_model, self.accelerator), self.amp_context:  # support bf16
            _, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True, use_cache=False)

        if self.finetuning_args.reward_model_type == "lora":
            replace_model(unwrapped_model, target="default")

        if self.is_chatglm_model:  # assume same architecture
            values = torch.transpose(values, 0, 1)

        rewards = []
        for i in range(values.size(0)):
            end_indexes = (batch["input_ids"][i] != self.tokenizer.pad_token_id).nonzero()
            end_index = end_indexes[-1].item() if len(end_indexes) else 0
            rewards.append(values[i, end_index].float().detach().cpu())  # use fp32 type

        return rewards

    @PPODecorators.empty_device_cache()
    def batched_forward_pass(
        self,
        model: "AutoModelForCausalLMWithValueHead",
        queries: "torch.Tensor",
        responses: "torch.Tensor",
        model_inputs: Dict[str, Any],
        return_logits: bool = False,
        response_masks: Optional["torch.Tensor"] = None,
    ) -> Tuple["torch.Tensor", Optional["torch.Tensor"], "torch.Tensor", "torch.Tensor"]:
        r"""
        Calculates model outputs in multiple batches.

        Subclass and override to inject custom behavior.
        """
        bs = len(queries)
        fbs = self.config.mini_batch_size
        all_logprobs = []
        all_logits = []
        all_masks = []
        all_values = []

        for i in range(math.ceil(bs / fbs)):
            input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
            query_batch = queries[i * fbs : (i + 1) * fbs]
            response_batch = responses[i * fbs : (i + 1) * fbs]
            if response_masks is not None:
                response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
            input_ids = input_kwargs["input_ids"]
            attention_mask = input_kwargs["attention_mask"]

            with self.amp_context:  # support bf16
                logits, _, values = model(**input_kwargs)

            if self.is_chatglm_model:
                values = torch.transpose(values, 0, 1)

            logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
            masks = torch.zeros_like(attention_mask)
            masks[:, :-1] = attention_mask[:, 1:]

            for j in range(len(query_batch)):
                start = len(query_batch[j]) - 1
                if attention_mask[j, 0] == 0:  # offset left padding
                    start += attention_mask[j, :].nonzero()[0].item()
                end = start + len(response_batch[j])

                if response_masks is not None:
                    response_masks_batch = torch.cat((torch.zeros_like(query_batch[j]), response_masks_batch[j]))[1:]

                masks[j, :start] = 0
                masks[j, end:] = 0
                if response_masks is not None:
                    masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]

            if return_logits:
                all_logits.append(logits)
            else:
                del logits

            all_values.append(values)
            all_logprobs.append(logprobs)
            all_masks.append(masks)

        return (
            torch.cat(all_logprobs),
            torch.cat(all_logits)[:, :-1] if return_logits else None,
            torch.cat(all_values)[:, :-1],
            torch.cat(all_masks)[:, :-1],
        )

    def save_model(self, output_dir: Optional[str] = None) -> None:
        r"""
        Saves model checkpoint.

        Subclass and override to inject custom behavior.
        """
        if output_dir is None:
            output_dir = self.args.output_dir

        if self.is_fsdp_enabled or self.is_deepspeed_enabled:
            try:
                state_dict = self.accelerator.get_state_dict(self.model)  # must be called at all ranks
                if self.args.should_save:
                    self._save(output_dir, state_dict=state_dict)
            except ValueError:
                logger.warning(
                    " stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
                    " use zero_to_fp32.py to recover weights"
                )
                if self.args.should_save:
                    self._save(output_dir, state_dict={})
                # remove the dummy state_dict
                remove_dummy_checkpoint(self.args.should_save, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
                self.model.save_checkpoint(output_dir)

        elif self.args.should_save:
            self._save(output_dir)

        if self.processor is not None and self.args.should_save:
            output_dir = output_dir if output_dir is not None else self.args.output_dir
            getattr(self.processor, "image_processor").save_pretrained(output_dir)