File size: 5,452 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Dict, Generator, List, Union

from ...extras.constants import PEFT_METHODS
from ...extras.misc import torch_gc
from ...extras.packages import is_gradio_available
from ...train.tuner import export_model
from ..common import get_save_dir
from ..locales import ALERTS


if is_gradio_available():
    import gradio as gr


if TYPE_CHECKING:
    from gradio.components import Component

    from ..engine import Engine


GPTQ_BITS = ["8", "4", "3", "2"]


def can_quantize(checkpoint_path: Union[str, List[str]]) -> "gr.Dropdown":
    if isinstance(checkpoint_path, list) and len(checkpoint_path) != 0:
        return gr.Dropdown(value="none", interactive=False)
    else:
        return gr.Dropdown(interactive=True)


def save_model(
    lang: str,
    model_name: str,
    model_path: str,
    finetuning_type: str,
    checkpoint_path: Union[str, List[str]],
    template: str,
    visual_inputs: bool,
    export_size: int,
    export_quantization_bit: int,
    export_quantization_dataset: str,
    export_device: str,
    export_legacy_format: bool,
    export_dir: str,
    export_hub_model_id: str,
) -> Generator[str, None, None]:
    error = ""
    if not model_name:
        error = ALERTS["err_no_model"][lang]
    elif not model_path:
        error = ALERTS["err_no_path"][lang]
    elif not export_dir:
        error = ALERTS["err_no_export_dir"][lang]
    elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset:
        error = ALERTS["err_no_dataset"][lang]
    elif export_quantization_bit not in GPTQ_BITS and not checkpoint_path:
        error = ALERTS["err_no_adapter"][lang]
    elif export_quantization_bit in GPTQ_BITS and isinstance(checkpoint_path, list):
        error = ALERTS["err_gptq_lora"][lang]

    if error:
        gr.Warning(error)
        yield error
        return

    args = dict(
        model_name_or_path=model_path,
        finetuning_type=finetuning_type,
        template=template,
        visual_inputs=visual_inputs,
        export_dir=export_dir,
        export_hub_model_id=export_hub_model_id or None,
        export_size=export_size,
        export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None,
        export_quantization_dataset=export_quantization_dataset,
        export_device=export_device,
        export_legacy_format=export_legacy_format,
    )

    if checkpoint_path:
        if finetuning_type in PEFT_METHODS:  # list
            args["adapter_name_or_path"] = ",".join(
                [get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path]
            )
        else:  # str
            args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path)

    yield ALERTS["info_exporting"][lang]
    export_model(args)
    torch_gc()
    yield ALERTS["info_exported"][lang]


def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
    with gr.Row():
        export_size = gr.Slider(minimum=1, maximum=100, value=1, step=1)
        export_quantization_bit = gr.Dropdown(choices=["none"] + GPTQ_BITS, value="none")
        export_quantization_dataset = gr.Textbox(value="data/c4_demo.json")
        export_device = gr.Radio(choices=["cpu", "auto"], value="cpu")
        export_legacy_format = gr.Checkbox()

    with gr.Row():
        export_dir = gr.Textbox()
        export_hub_model_id = gr.Textbox()

    checkpoint_path: gr.Dropdown = engine.manager.get_elem_by_id("top.checkpoint_path")
    checkpoint_path.change(can_quantize, [checkpoint_path], [export_quantization_bit], queue=False)

    export_btn = gr.Button()
    info_box = gr.Textbox(show_label=False, interactive=False)

    export_btn.click(
        save_model,
        [
            engine.manager.get_elem_by_id("top.lang"),
            engine.manager.get_elem_by_id("top.model_name"),
            engine.manager.get_elem_by_id("top.model_path"),
            engine.manager.get_elem_by_id("top.finetuning_type"),
            engine.manager.get_elem_by_id("top.checkpoint_path"),
            engine.manager.get_elem_by_id("top.template"),
            engine.manager.get_elem_by_id("top.visual_inputs"),
            export_size,
            export_quantization_bit,
            export_quantization_dataset,
            export_device,
            export_legacy_format,
            export_dir,
            export_hub_model_id,
        ],
        [info_box],
    )

    return dict(
        export_size=export_size,
        export_quantization_bit=export_quantization_bit,
        export_quantization_dataset=export_quantization_dataset,
        export_device=export_device,
        export_legacy_format=export_legacy_format,
        export_dir=export_dir,
        export_hub_model_id=export_hub_model_id,
        export_btn=export_btn,
        info_box=info_box,
    )