# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict, Generator, List, Union from ...extras.constants import PEFT_METHODS from ...extras.misc import torch_gc from ...extras.packages import is_gradio_available from ...train.tuner import export_model from ..common import get_save_dir from ..locales import ALERTS if is_gradio_available(): import gradio as gr if TYPE_CHECKING: from gradio.components import Component from ..engine import Engine GPTQ_BITS = ["8", "4", "3", "2"] def can_quantize(checkpoint_path: Union[str, List[str]]) -> "gr.Dropdown": if isinstance(checkpoint_path, list) and len(checkpoint_path) != 0: return gr.Dropdown(value="none", interactive=False) else: return gr.Dropdown(interactive=True) def save_model( lang: str, model_name: str, model_path: str, finetuning_type: str, checkpoint_path: Union[str, List[str]], template: str, visual_inputs: bool, export_size: int, export_quantization_bit: int, export_quantization_dataset: str, export_device: str, export_legacy_format: bool, export_dir: str, export_hub_model_id: str, ) -> Generator[str, None, None]: error = "" if not model_name: error = ALERTS["err_no_model"][lang] elif not model_path: error = ALERTS["err_no_path"][lang] elif not export_dir: error = ALERTS["err_no_export_dir"][lang] elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset: error = ALERTS["err_no_dataset"][lang] elif export_quantization_bit not in GPTQ_BITS and not checkpoint_path: error = ALERTS["err_no_adapter"][lang] elif export_quantization_bit in GPTQ_BITS and isinstance(checkpoint_path, list): error = ALERTS["err_gptq_lora"][lang] if error: gr.Warning(error) yield error return args = dict( model_name_or_path=model_path, finetuning_type=finetuning_type, template=template, visual_inputs=visual_inputs, export_dir=export_dir, export_hub_model_id=export_hub_model_id or None, export_size=export_size, export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None, export_quantization_dataset=export_quantization_dataset, export_device=export_device, export_legacy_format=export_legacy_format, ) if checkpoint_path: if finetuning_type in PEFT_METHODS: # list args["adapter_name_or_path"] = ",".join( [get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path] ) else: # str args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path) yield ALERTS["info_exporting"][lang] export_model(args) torch_gc() yield ALERTS["info_exported"][lang] def create_export_tab(engine: "Engine") -> Dict[str, "Component"]: with gr.Row(): export_size = gr.Slider(minimum=1, maximum=100, value=1, step=1) export_quantization_bit = gr.Dropdown(choices=["none"] + GPTQ_BITS, value="none") export_quantization_dataset = gr.Textbox(value="data/c4_demo.json") export_device = gr.Radio(choices=["cpu", "auto"], value="cpu") export_legacy_format = gr.Checkbox() with gr.Row(): export_dir = gr.Textbox() export_hub_model_id = gr.Textbox() checkpoint_path: gr.Dropdown = engine.manager.get_elem_by_id("top.checkpoint_path") checkpoint_path.change(can_quantize, [checkpoint_path], [export_quantization_bit], queue=False) export_btn = gr.Button() info_box = gr.Textbox(show_label=False, interactive=False) export_btn.click( save_model, [ engine.manager.get_elem_by_id("top.lang"), engine.manager.get_elem_by_id("top.model_name"), engine.manager.get_elem_by_id("top.model_path"), engine.manager.get_elem_by_id("top.finetuning_type"), engine.manager.get_elem_by_id("top.checkpoint_path"), engine.manager.get_elem_by_id("top.template"), engine.manager.get_elem_by_id("top.visual_inputs"), export_size, export_quantization_bit, export_quantization_dataset, export_device, export_legacy_format, export_dir, export_hub_model_id, ], [info_box], ) return dict( export_size=export_size, export_quantization_bit=export_quantization_bit, export_quantization_dataset=export_quantization_dataset, export_device=export_device, export_legacy_format=export_legacy_format, export_dir=export_dir, export_hub_model_id=export_hub_model_id, export_btn=export_btn, info_box=info_box, )