Spaces:
Running
Running
Merge branch 'main' into suwabe/docker
Browse files- process.py +65 -8
process.py
CHANGED
@@ -7,6 +7,7 @@ import random
|
|
7 |
from datetime import datetime
|
8 |
from pyannote.audio import Model, Inference
|
9 |
from pydub import AudioSegment
|
|
|
10 |
class AudioProcessor():
|
11 |
def __init__(self,cache_dir = "/tmp/hf_cache"):
|
12 |
hf_token = os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
@@ -17,6 +18,7 @@ class AudioProcessor():
|
|
17 |
model = Model.from_pretrained("pyannote/embedding", use_auth_token=hf_token, cache_dir=cache_dir)
|
18 |
self.inference = Inference(model)
|
19 |
|
|
|
20 |
def cosine_similarity(self,vec1, vec2):
|
21 |
vec1 = vec1 / np.linalg.norm(vec1)
|
22 |
vec2 = vec2 / np.linalg.norm(vec2)
|
@@ -53,7 +55,17 @@ class AudioProcessor():
|
|
53 |
embedding1 = self.inference(path1)
|
54 |
embedding2 = self.inference(path2)
|
55 |
return float(self.cosine_similarity(embedding1.data.flatten(), embedding2.data.flatten()))
|
|
|
|
|
|
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def process_audio(self, reference_path, input_path, output_folder='/tmp/data/matched_segments', seg_duration=1.0, threshold=0.5):
|
58 |
# 出力先ディレクトリの中身をクリアする
|
59 |
if os.path.exists(output_folder):
|
@@ -76,13 +88,58 @@ class AudioProcessor():
|
|
76 |
|
77 |
unmatched_time_ms = total_duration_ms - matched_time_ms
|
78 |
return matched_time_ms, unmatched_time_ms
|
|
|
79 |
|
80 |
-
def
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from datetime import datetime
|
8 |
from pyannote.audio import Model, Inference
|
9 |
from pydub import AudioSegment
|
10 |
+
|
11 |
class AudioProcessor():
|
12 |
def __init__(self,cache_dir = "/tmp/hf_cache"):
|
13 |
hf_token = os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
|
|
18 |
model = Model.from_pretrained("pyannote/embedding", use_auth_token=hf_token, cache_dir=cache_dir)
|
19 |
self.inference = Inference(model)
|
20 |
|
21 |
+
|
22 |
def cosine_similarity(self,vec1, vec2):
|
23 |
vec1 = vec1 / np.linalg.norm(vec1)
|
24 |
vec2 = vec2 / np.linalg.norm(vec2)
|
|
|
55 |
embedding1 = self.inference(path1)
|
56 |
embedding2 = self.inference(path2)
|
57 |
return float(self.cosine_similarity(embedding1.data.flatten(), embedding2.data.flatten()))
|
58 |
+
|
59 |
+
def generate_random_string(self,length):
|
60 |
+
letters = string.ascii_letters + string.digits
|
61 |
+
return ''.join(random.choice(letters) for i in range(length))
|
62 |
|
63 |
+
def generate_filename(self,random_length):
|
64 |
+
random_string = self.generate_random_string(random_length)
|
65 |
+
current_time = datetime.now().strftime("%Y%m%d%H%M%S")
|
66 |
+
filename = f"{current_time}_{random_string}.wav"
|
67 |
+
return filename
|
68 |
+
|
69 |
def process_audio(self, reference_path, input_path, output_folder='/tmp/data/matched_segments', seg_duration=1.0, threshold=0.5):
|
70 |
# 出力先ディレクトリの中身をクリアする
|
71 |
if os.path.exists(output_folder):
|
|
|
88 |
|
89 |
unmatched_time_ms = total_duration_ms - matched_time_ms
|
90 |
return matched_time_ms, unmatched_time_ms
|
91 |
+
|
92 |
|
93 |
+
def process_multi_audio(self, reference_pathes, input_path, output_folder='/tmp/data/matched_multi_segments', seg_duration=1.0, threshold=0.5):
|
94 |
+
# 出力先ディレクトリの中身をクリアする
|
95 |
+
if os.path.exists(output_folder):
|
96 |
+
for file in os.listdir(output_folder):
|
97 |
+
file_path = os.path.join(output_folder, file)
|
98 |
+
if os.path.isfile(file_path):
|
99 |
+
os.remove(file_path)
|
100 |
+
else:
|
101 |
+
os.makedirs(output_folder, exist_ok=True)
|
102 |
|
103 |
+
# 入力音声をセグメントに分割
|
104 |
+
segmented_path, total_duration_ms = self.segment_audio(input_path, seg_duration=seg_duration)
|
105 |
+
segment_files = sorted(os.listdir(segmented_path))
|
106 |
+
num_segments = len(segment_files)
|
107 |
+
|
108 |
+
# 各リファレンスごとにセグメントとの類似度を計算し、行列 (rows: reference, columns: segment) を作成
|
109 |
+
similarity = []
|
110 |
+
for reference_path in reference_pathes:
|
111 |
+
ref_similarity = []
|
112 |
+
for file in segment_files:
|
113 |
+
segment_file = os.path.join(segmented_path, file)
|
114 |
+
sim = self.calculate_similarity(segment_file, reference_path)
|
115 |
+
ref_similarity.append(sim)
|
116 |
+
similarity.append(ref_similarity)
|
117 |
+
|
118 |
+
# 転置行列を作成 (rows: segment, columns: reference)
|
119 |
+
similarity_transposed = []
|
120 |
+
for seg_idx in range(num_segments):
|
121 |
+
seg_sim = []
|
122 |
+
for ref_idx in range(len(reference_pathes)):
|
123 |
+
seg_sim.append(similarity[ref_idx][seg_idx])
|
124 |
+
similarity_transposed.append(seg_sim)
|
125 |
+
|
126 |
+
# 各セグメントについて、最も高い類似度のリファレンスを選択
|
127 |
+
best_matches = []
|
128 |
+
for seg_sim in similarity_transposed:
|
129 |
+
best_ref = np.argmax(seg_sim) # 最も類似度の高いリファレンスのインデックス
|
130 |
+
# 閾値チェック (必要に応じて)
|
131 |
+
if seg_sim[best_ref] < threshold:
|
132 |
+
best_matches.append(None) # 閾値未満の場合はマッチなしとする
|
133 |
+
else:
|
134 |
+
best_matches.append(best_ref)
|
135 |
+
|
136 |
+
# 各リファレンスごとに一致時間を集計 (セグメントごとの長さ seg_duration を加算)
|
137 |
+
matched_time = [0] * len(reference_pathes)
|
138 |
+
for match in best_matches:
|
139 |
+
if match is not None:
|
140 |
+
matched_time[match] += seg_duration
|
141 |
+
|
142 |
+
return matched_time
|
143 |
+
|
144 |
+
|
145 |
+
|